Home » Posts tagged '3D Printing'

Tag Archives: 3D Printing

Canada Makes 3D Challenge 2018-19


Canada Makes is again offering its Pan-Canadian 3D Printing Design Challenge for postsecondary students enrolled in a Canadian college or university. Winners to be announced in the Spring of 2019.

Canada Makes 3D Challenge Trophy

Lisa Brock and Yanli Zou of the University of Waterloo are now part of the Canada Makes trophy’s history

Last year’s challenge was “Design solutions for a sustainable future” and is again this year. Five finalist from last year’s challenge each received $1,000 for their design. Learn more about the designs at Canada Makes announces finalists for its 3D Challenge.

The adoption of digital manufacturing technologies such as 3D printing requires new approaches to skills and training focused on building experiential and collaborative learning. To foster this objective, the Canada Makes 3D Challenge will challenge university/college teams to design a part and compete for a full one-year paid internship from a Burloak Technologies and cash prizes.

Theme: Design solutions for a sustainable future

Description: Additive manufacturing is empowering new ways to re-think design and fabrication through innovative materials, optimized structures and enhanced functionality. There is currently a drive to think about how our society is changing in the wake of population growth and sustainability concerns. Canada Makes invites student designers to participate in the 3D Design Competition with a focus on creating innovative tools or products that reduce our environmental footprint using additive manufacturing in tandem with conventional manufacturing approaches.

Such examples include (and are not limited to):

  • lightweight structures or new designs of automotive or aerospace components that reduce overall weight and fuel consumption
  • innovative components that optimize fuel or energy consumption
  • energy harvesting devices with innovative features
  • multi-purpose objects that simplify everyday life and reduce waste
  • wearable tools or objects that enhance mobility efficiency and reduce waste

Phase I – Students who wish to participate must pre-register by November 30, 2018 indicating their intent to submit a final design.

Phase II – Participants will submit a design based on the provided criteria. These designs will be analyzed and evaluated via simulation with the top finalists announced, recognized and awarded their cash prize. Deadline for submissions is February 22, 2019.

Phase III – The top five finalists will have their design fabricated and tested, and will be invited to either make a live or video presentation and have a chance at more prizes including a chance at a one-year paid internship at Burloak Technologies.


The Student/Team (no more than 3 students per team) will submit the following by February 22, 2019:

  • Cover sheet
  • 150 word description/summary
  • STL files and source files from any CAD program
  • An image of the current product design (if applicable) and a detailed description of the changes
  • Business case (800 word):
  • Justification of the product redesign, value added as measured by reduced
  • Time to produce
  • Cost impact
  • Sustainability
  • Energy consumption or renewable energy generation
  • Reduced materials
  • Promoting green design
  • Participants should define the unmet need in society or explain the waste in current solutions
  • Precisely what is being proposed
  • Why it is am improvement over existing products

Judges will choose the top 5 finalists and Canada Makes will arrange to fabricate their designs to be showcased at a final event in the spring of 2019. The finalist/teams will receive a cash prize and a chance at a one-year paid internships at Burloak Technologies.

The Challenge will have clear winning criteria and be judged on the merit of their application.

Submitted designs will be evaluated via simulation, and the top five designs will be selected for fabrication and testing based on the required criteria. The winning entries will best satisfy all of the performance criteria.

Eligibility Rules and Submission Guidelines

Terms of Acceptance

Responsibility for Submission


Contact: kaitlin.reibling@cme-mec.ca

Additive Manufacturing – Year in review – 2018

As we approach the end of the year and look back, we see that a lot has happened in the world of Additive Manufacturing. To help bring the year into perspective, we have asked a number of Canadian experts in Additive Manufacturing to provide us with their views on the year by answering some questions.

  1. What trends have you seen this past year in AM?
  2. Any announcements from the past year that grabbed your attention?
  3. What is one thing from the past year that has you hopeful for Canada’s AM industry and what opportunities exist for Canada going forward in AM?
  4. What apprehensions do you have and what are some upcoming challenges?
  5. Any words of advice for those looking to use AM in the coming year?

These questions have been answered by (in alphabetical order):

  • Peter Adams, President & CEO of Burloak Technologies Inc
  • Dr. Mathieu Brochu, Associate Professor at McGill University
  • Gilles Desharnais, President of Axis Prototypes Inc.
  • Dr. Philippe Dupuis, President & Co-founder of Creadditive Solutions 3D
  • Martin Petrak, Co-Founder & CEO of Precision ADM
  • Cassidy Silbernagel, Expert in AM and Design, future PhD graduate
  • Dr. Ehsan Toyserkani, Professor at the University of Waterloo
  • Dr. Tonya Wolfe, Senior Research Engineer at InnoTech Alberta

Canada Makes would like to thank our contributors for taking the time to share their expertise.

What trends have you seen this past year in AM?

Ehsan Toyserkani

From my perspective,adoption of AM for series production has been the main trend in 2018. It seems that reliable, repeatable and affordable mass production is eventually on the horizon by AM processes.  Hardware speed and quality improvements, reliable software and a larger pool of materials adopted for AM are some of the main eye-catching trends in 2018.

Major meaningful initiatives for full adoption of AM to the automotive industry have been surfaced. Thanks to the first point mentioned above.

Tonya Wolfe

The last year has been a turning point in AM here in Alberta from a perspective of AM being a technology for other industries in other countries to one that should be implemented in current practice now.   There seems to be more designers using a desktop printer for visualization and prototyping purposes, so the growth into production will be an inevitable next step.

We have noted that AM is now a mainstream event at conferences and tradeshows both in Canada and internationally.  It is no longer a small dispersion of companies but now has its own dedicated halls and conference streams.

The technology is reaching to more remote areas and enabling local ideation and manufacturing.  However, risk of adopting premature technology is crippling the competitiveness of the local industries.  Perhaps there is an overabundance of new technology and companies are anxious in deciding what areas are best for their growth?

Gilles Desharnais

Metal is king.  FDM leads the way for Polymers… HP is now delivering and aggressively pushing MultiJet Fusion.

In the metal world, big industrial players have joined the field and are making their mark – Trumpf, DMG Mori, AddUp (Michelin-Five), GE are adding a layer of seriousness to the Powder Bed market.  The “prototyping” manufacturers (EOS, 3D Systems, SLM, Renishaw), are now being challenged by companies that have experience in making robust industrial machines that can reproduce the same quality.

The metal presence at FormNext was impressive and the marketing investment by the metal players showed the seriousness that they put into this market.

There is also a big trend of powder metallurgy being used as a source of additive manufacturing of metal.  People like BASF, DeskTop Metal, MarkForged, XJet, HP are bringing to market solutions that rely on the science of powder metallurgy to facilitate 3D Printing.  Now, there are serious challenges associated to the powder metallurgy process that is causing challenges for these solutions, namely the challenge of the part shrinkage during the post processing which can alter dimensions of the parts. Most if not all of the manufacturers are investing into the post-process and software to resolve this issue, however, to date, the solutions are not stable and universally applicable.  There is progress however, and these processes could significantly impact the cost of metal 3D Printing components.

On the Polymer side, HP Multijet Fusion seems to have finally ironed out the kinks in their systems and can now ship systems that are relatively stable.  HP’s aggressive marketing appears to be generating results as the number of systems being shipped is growing.

For Thermoplastics, the continued advanced on the FDM front are apparent.  More and more materials are being offered with most of the big engineered plastic players now present in the field… BASF, Covestro, DSM, Dupont, etc. In addition, numerous small production houses with their own recipes is increasing the scope of the offering.  On the machine side, the low bar has been set for years, and now we are seeing a growing number of high temperature solution, and also, the growing availability of large format FDM printing.

Cassidy Silbernagel

It seems that the industry is moving away from printing cool trinkets and toys as a way to showcase the technology, and rather highlighting solutions to problems which the technology can help solve. This is a much better way to help change the mindset from the idea that 3D printing is just for making cool little plasticy things. The power of Additive Manufacturing comes from it’s potential applications, which requires a different mindset. Part of this shift requires seeing the solutions others have come up with, and that is much better done with actual plastic fixtures for tooling rather than Yoda figurines and toy boats.

Mathieu Brochu

As you know, I am only involved in metal AM. Some key aspects that I found interesting, but that can all be summarized under “pushing the boundaries of AM”. I believe the race to launch AM platform has slowed down, but strengthening of what is existing has occurred. We are seeing more automation of system (fully integrated systems), where human intervention is reduced and performance optimization is increased. The field has now pushed the boundary of maximum built angle with new and innovative laser raster path, we are seeing several attempts at increasing the built speed, with multi-lasers, new recoaters, attempts to increase the powder layer thicknesses, etc. New intergrated systems with built and sinter platform integrated, etc. All these developments will definitely contributes to bring AM closer to mainstream manufacturing.

Martin Petrak

Metal additive manufacturing applications are on the rise with a growing demand for metals like Titanium, Inconel and Stainless Steel.

Philippe Dupuis

Consolidation of AM equipment offerings by industry giants continued to dominate the discussion in 2018. Large manufacturers such as Stratasys jumping into the metal additive manufacturing space, following GE Additive’s new investments in metal technologies is exciting as it validates many experts’ opinion that the massive adoption of metal AM is right around the corner.

Peter Adams

At Burloak we see customers moving from a tire kicking phase of evaluation into full blown qualifications of programs. This seems to be driven by several factors including – better understanding of the material performance – Better standards definition – the availability of multilaser AM systems which are lowering the cost of manufacture – A much more serious approach to identifying suitable applications and finally that the machine platforms are becoming more robust.

Any announcements from the past year that grabbed your attention?

Philippe Dupuis

Health Canada publishing a draft guidance document for the use of AM to produce Class III and IV medical devices paves the way to broader acceptance of this game-changing technology in the medical field for Canada. This announcement followed the CRIQ’s major investment in a medical additive manufacturing center in Quebec City and Renishaw’s opening of the ADEISS center in London, Ontario which all point towards Canada setting itself up to become a global competitor in manufacturing medical devices using AM.

Mathieu Brochu

Nothing in particular, but its more the sum of all the new opportunities, that now once integrated, makes AM even more concrete. The points discussed above.

Peter Adams

On The machines side I would say that EOS announcement of the laser array system which will lower cycle times to fractions of todays systems for plastic builds signals where the industry is heading. Several of the major metals groups finally brought their multi laser technologies to market and there have been multiple developments on the post processing side which we like.

With respect to the AM supply chain I would say that there have been a number of very large announcements that signal a shift in the market. Burloak Technologies a division of Samuel announced its $104M AMCE in Oakville, Ontario. Carpenter Technologies announced a new large scale technology centre along with the acquisition of LPW. Oerlikon continued to roll out its $300M+ investment in its AM supply chain. Siemens opened its new Material Solutions technology centre in the UK with approx. $70M of investment and Voestalpine continued to open AM focused facilities.

I found it interesting that all of these announcements had similar themes with respect to what the industry perceives is needed to be successful in additive production parts manufacture in that all of the companies focused not just on AM machinery, but rather on the whole value proposition from design through manufacture, heat treatment, machining and materials qualification as part of the service. We certainly believe that these levels of investment are really the minimum to deliver certified production parts.

Martin Petrak

Canada has its very first Metal AM machine innovator and supplier: Nanogrande, that officially unveiled the MPL-1, the world’s first nanoscale metal particle 3D printer at Fabtech 2018 in Atlanta.

Gilles Desharnais

HP’ announcement that they will go into metal additive with a binder jetting – powder metallurgy type solution.

Burloak (Samuel) commitment to their new center.

Cassidy Silbernagel

One that stands out is the TRUMPF announcement of using a green laser in a production machine and that their new printer will allow pre-heat temperatures of up to 500°C. If these two things were in the same machine, it would allow almost any material to be printed because the energy from green lasers is better absorbed by almost all metals including pure copper and aluminium, and the high pre-heat temperature reduces the thermal differential from meltpool to solid, thus reducing the internal stresses in a part, and may allow for crack suseptable materials such as nickel super-alloys to be better processed.

Tonya Wolfe

We are very proud of Onstream Technologies using AM in pipeline applications.  They are a success story of design and implementation of AM technology to improve their products.

We have also noted that large number of collaborations that are occurring in AM outside of Canada between sectors and types of organizations.  The need to work cross-disciplinary has been realized and will strengthen adoption.  This is happening in Ontario, Quebec and the Maritimes, but has yet to be formalized in Western Canada.

Companies such as Ethiad and Navantia are fully adopting the technology on a variety of scales.  I am not aware of Canadian companies fully adopting the technology yet throughout their practice or having an AM business unit.  In Alberta, large companies do not yet understand where AM can be integrated into their processes, but change is starting.

I think the diagram Digital Alloys put out recently showing all the metal AM processes is telling of where we are in metal AM.  There is a lot going on and we need to be cognizant that no one technology will solve all problems.  There is also a lot of work to do to decide which processes meet a company’s manufacturing needs.  For example, understanding tolerances in AM is not yet fully understood, but is critical for adoption into AM.

Ehsan Toyserkani


  1. BMW’s Additive Manufacturing Campus
  2. Carbon+ Adidas collaboration

In Canada,

  1. The announcement of NSERC Strategic Network for Holistic Innovation in Additive Manufacturing (HI-AM)
  2. Major investment in Burloak

What is one thing from the past year that has you hopeful for Canada’s AM industry and what opportunities exist for Canada going forward in AM?

Tonya Wolfe

I am hopeful the superclusters and the initiation of the HI-AM will be a supportive role for AM in Canada.  The trade issues that have evolved recently have initiated discussions regarding reshoring manufacturing.  We have a number of unique industries that will benefit from adoption of AM (energy, agriculture and marine).  These industries need some time to redevelop their designs to take advantage of additive manufacturing.

I am an avid supporter for women in technology and manufacturing.  AM makes manufacturing more accessible to bright, creative people.  We have initiated an Alberta Additive Manufacturing Network, with the goal to make the technology accessible and at a lower risk.  The number of participants will quickly grow over the next year.

Gilles Desharnais

GE Additive is being a phenomenal evangelist to the Additive Industry with their remarkable case studies for part consolidation as a driver to their manufacturing future. With this, GE is working with Canadian manufacturers allowing these opportunities from south of the border to stimulate the Canadian AM market.

Martin Petrak

We have seen significant investments in AM capability and capacity in Canada in 2018. There is great opportunity for Canadian companies large or small to become global leaders in the Additive Manufacturing value and supply chains. With Canada’s strong natural resource base, AM capacity and capability, as well as manufactured product export track record, I feel Canada will continue to be highly competitive in AM well into the future.

Ehsan Toyserkani

The above announcements have changed the pace of AM in Canada, both academically and industrially. Canada can be a leader in R&D and also AM adoption to different industries such as aerospace and automotive.

Philippe Dupuis

The discussion around AM is starting to shift from the verticals it has been typically constrained to (aerospace, for example) towards other sectors which were once thought of as more conservative and less promising. The automotive, energy as well as oil and gas sectors are increasingly joining the bandwagon for AM adoption, and we at Creadditive are seeing a lot of interest from the construction sector in exploring disruptive technologies which could help them address the challenges that are typical of labour-intensive and extremely complex multi-discipline projects. In terms of opportunity, Canada is a very natural-resource rich country, and has a very strong position in metal powder manufacturing with companies such as AP&C, Tekna, Pyrogenesis and Equispheres, so I hope we can learn from these success stories and build an AM material processing infrastructure around our organic materials resources such as petroleum-based plastics and bio-plastic from wood products for both western and eastern Canada.

Peter Adams

Obviously you would expect me to say that the Burloak Additive Manufacturing Centre of Excellence was the major announcement that I believe puts Canada in a lead position. Beyond that, I think the continued adoption by academia is critical and very welcome although I do think that we need to be careful that these academic centres focus remains on R & D and education and not competing with industry as this will kill investment by the private sector. Another noteworthy event was the major expansions undertaken in Canada by AP& C and Equispheres.

Cassidy Silbernagel

I’m excited about Canada’s Innovation Supercluster Initiative and hope that it will help grow Canada’s AM sector, because right now it is very small and young compared to what is happening in Europe and the US. At the same time, this opens up great possibilities for growth and adoption in Canada for the technology.

Mathieu Brochu

To me, Canada is a raw material supplier and a end user of the technology. Massive investments in metal powder production is occurring to offer a wide variety of high quality products to the market. We are also seeing the number of printing bureau and OEM increasing the number of machine, testing the products, learning the technology. The important footsteps for a healthy AM adoption is on-going.

What apprehensions do you have and what are some upcoming challenges?

Ehsan Toyserkani

Although the level of misconception about the potential of AM has been reduced over the last few years, it is still a big challenge to control public and industry expectation. This may create negative impression if the technology readiness level will not be able to fulfil unrealistic conceptions that are wrongly disseminated in industry and public.

Other worry is the low momentum in the adoption of new materials to the portfolio of metal AM. For instance, more than 1,000 ferrous alloys are commercially available for conventional manufacturing such as casting, machining and forming; however, only a handful number of ferrous alloys have been verified for AM systems and limited production by original equipment manufacturers. Customization and validation of AM metal powders and introducing them to the market usually takes years of research and development. This may simply undermine the current momentum in AM

Philippe Dupuis

The biggest challenge for AM in the coming years will be the attraction and retention of skilled labour. The education network in Canada is strong and well versed in AM, but will most likely struggle to produce enough talent to compensate for the shortage. Companies will need to invest in training employees on the job instead of relying on a previously built skill-set. This type of training will also put pressure on the too-few equipment hours available in the marketplace already. In this sense, the challenge will be to create a model and ecosystem where academia can open the doors to laboratories and classrooms for industry and to create continuing education opportunities to reskill factory workers with skills in traditional manufacturing towards the technical skills required for AM.

Mathieu Brochu

I believe cost remains the main challenge. Cost with the capital “C”. Anything that will bring down the cost is a challenge to be solved if AM is to be mainstream and not only for smaller hi-end products. We have to keep in mind that the competing technologies are also getting technological improvements, it’s a ferocious competition. Talent is another key aspects, but numerous schools with various education level are tackling this issue.

Peter Adams

We think that the industry leading OEM’s may try to commoditize the market too soon and that this would lead to investment shortfalls and the industry would not reach its potential. The powder supply chain may not be ready to meet the scale up although investments by AP&C, Carpenter, Praxair, Equispheres etc. make provides some comfort.

Tonya Wolfe

I am concerned about risk averse company culture and the fear of ‘being first’.  We need to support retraining in the areas of mechatronics, design for additive, digital twins and data analytics.  It will be very challenging to hire people with these skill sets for the foreseeable future, so they will need to be developed internally.

The lack of investment in capital infrastructure compared to other jurisdictions is concerning.  It will be challenging to compete with limited resources.

Gilles Desharnais

My apprehension is the long term viability of Powder Bed with its significant overhead associated with supports.

Cassidy Silbernagel

I’m worried about the adoption level of AM in Canada. There is so much potential for it’s use, but Canada seems to be lagging behind the rest of the world when it comes to adoption. Before there can be any meaningful growth in this area in Canada, individuals and companies need to be aware of what AM can do for them, which means a lot of education is required for this awareness. However, Europe gained this awareness a decade ago and are showing massive growth in this area, and Canada is playing catch-up. If Canada doesn’t rapidly adopt this technology, they will miss out on some potentially huge opportunities.

Any words of advice for those looking to use AM in the coming year?

Peter Adams

I would say that you need to understand your motivation for trying AM and that you find a potential partner who can not only guide you through the process, but can demonstrate their technical competence and ability to scale with you to production.

Cassidy Silbernagel

Jump in and see what others are doing in the rest of the world with AM. Then try and find the experts who can help guide you in the journey to adopt AM. Realise that AM may not solve all of your problems, and it may not be the best solution, but on the otherhand, it could do all those things. It’s potential reaches beyond just prototypes and proof-of-concept. It can be used as actual end-use products, or help make those end-use products faster and cheaper.

Mathieu Brochu

Go before its too late. However, one need to understand that starting in AM is not as easy as it looks, and lots of efforts must be put down downstream of the first order is completed. AM is a fascinating field, but integrating all these multi-disciplinary field under one technology remains a challenge. Who would have thought we would go to the moon… and we did. Who would have thought 3D printing would be mainstream at one point in time, and it will happen.

Tonya Wolfe

There is opportunity for those who can provide design for AM solutions.  However, the human element is more important than ever before.  We need to collaborate, challenge assumptions and share ideas.   AM cannot be done simply by uploading a drawing to the cloud and receiving the part in the mail a few days later.  The best solutions are found by collaborative convergence.

Most engineers are still thinking linearly and need strategies to think organically.  This process takes time and there are several failures leading to the final successful design.  Companies need to support this process.

Philippe Dupuis

Start small but start now. Additive manufacturing is going to proliferate at high speed in industrial spaces as the business cases for AM gain traction and attention. The key issue will be to know when and how AM can provide an edge by adding value to a product or workflow, instead of trying to use this tool to directly replace other manufacturing processes where competition is fierce. In this case, incremental adoption can outperform complete workflow rework by ensuring the best process is chosen on its own merits, not due to its novelty or to its disruptive quality. Remember: “The early bird gets the worm, but the second mouse gets the cheese”!

Ehsan Toyserkani

I would recommend that those companies that are looking to adopt AM start to have dialogue with key AM players in Canada (e.g., Canada Makes, Burloak, HI-AM, MSAM, etc.). This will minimize the risk of their investment.  These groups emphasis strengthening collaborative interactions between academic researchers, the Canadian manufacturing industry, industrial organizations, government researchers, and international collaborators by addressing complex technical issues associated with metal AM.

Martin Petrak

My best advise to most organization and companies interested in AM is to invest in knowledge and formal training in Design for Additive Manufacturing. Keep an eye on new software developments that will make it easier to go from design to print in the near future.

Additive Manufacturing 101: How to (re)design your parts for Additive Manufacturing

(Image: 3D Hubs)

Redesigned concept of a carburetor (Image: Cassidy Silbernagel)

  Mechanical Design Engineer and Additive Manufacturing Ph.D. student

This is the final article in a series of original articles that will help you understand the origins of the technology that is commonly called 3D printing. First an introduction, followed by the seven main technologies categories (binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, vat photopolymerization) and now a design philosophy for additive manufacturing.

Design for Additive Manufacturing

All of these following principles differ greatly for each technology category. Some are not a concern, others are a major concern. Before you design for AM, you need to know which process you are designing for, and if possible, what machine it will be built upon. Each machine and even different materials differ on some of these aspects.

Supports / Overhangs

Each technology deals with this differently. Generally, there is a critical angle (typically 45 degrees) that allows no support to be needed such as in the letter Y. Some need supports for all bridges of a certain length such as the middle of a capital H. Others need supports for overhangs such as at the ends of a capital T. How supports are designed or generated and removed needs to be thought of in the design process. By changing or re-orientating the design, you can minimise the need for supports, and change how the supports are removed.


Two factors come into play for orientation. First is material properties can differ depending on the direction they are built. This shows some test bars I printed to test how build orientation affects the electrical resistivity of a metal alloy. Strength can differ depending on build orientation so if you have a part that needs to have a certain strength in a certain direction, you will need to know how the orientation affects the strength of the part.

Images: Marc Saunders

The second is that printed features can come out looking differently depending on orientation. If you have a circle you want to print and have it come out circular, you will need to orient the part so that the circle is in the XY plane and not chopped up by the layers.

Minimum feature size / Resolution

This greatly depends on the process you use, and especially the machine you use. Just because two machines from different manufacturers use the same technology, they may not have the same feature specifications. There are also many factors that play into minimum features, and each is different. Here you can see some of the minimum sizes for a typical SLS process in Nylon. This is where you need to find out the machine and material specific specifications if you want to be designing features in the submillimeter range.


There are many different ways post-processing can affect how you design. If the process relies on supports, they will need to be removed manually, or potentially semi-automatically. If attached to a build plate, the parts will need to be removed. If there is excess powder or liquid trapped, it will need to be removed. If you want uniform or enhanced material properties, a heat treatment or post infusing of a second material may be needed. If you have critical surfaces that assemble, post machining will be required including custom part holding jigs or fixtures. All of these need to be taken into consideration when designing in order to gain the greatest benefits from AM.

Four ways to (re)design parts

Method 1: Send directly for AM

Method 2: Modify for AM

Method 3: Combine and redesign for AM

Method 4: Rethink and redesign for AM

Method 1: Send directly for AM

The first and easiest is to simply take an existing design and without modification create it using AM technology. This is advantageous when the single part is excessively complex making it difficult to produce using traditional methods or made from materials that are expensive where minimal waste is desirable. This can also be desirable when the lead times for a part are excessively long or if the part is no longer manufactured.


  • Easiest
  • Less material wastage
  • Direct single part replacement
  • Potential faster lead times
  • Allows easier manufacture of complex design


  • Narrow scope of use
  • Limited potential gains

Method 2: Modify for AM

The second is to redesign the single part to either improve performance and/or to make the part better suited for AM.


  • Improve performance
  • Decrease weight
  • Improve printability
  • Direct single part replacement
  • Less material wastage


  • Requires same assembly methods and parts

Method 3: Combine and redesign for AM

The third is to combine multiple parts to aid in part reduction, reduce assembly costs, and enhance performance.

Before 3D printing, this fuel nozzle had 20 different pieces. Now, just one part, the nozzle is 25% lighter and five times more durable.


  • Allows reduction of parts
  • Reduce assembly
  • Potentially less risk than a complete redesign of overall machine/assembly


  • Requires more design time
  • Requires testing and validation

Method 4: Modify for AM

The fourth is to completely rethink the assembly and redesign according to basic first principles and design requirements. While this complete redesign can yield the greatest results, it takes the most time and effort to achieve.


Image: Optisys LLCThe test project involved a complete redesign of a high-bandwidth, directional tracking antenna array for aircraft (known as a Ka-band 4×4 monopulse array).

Reduce part count reduction from 100 discrete pieces to a one-piece device.

  • Cut weight by over 95%.
  • Reduce lead time 11 to two months. (eight months of development, three to six more of build time)
  • Reduce production costs by 20%.
  • Eliminate 75% of non-recurring costs.


  • Allows greatest performance increases
  • Eliminate parts and assembly
  • Reduce weight, cost, lead time


  • Most amount of design effort

Canada Makes 3D Challenge Trophy, Concept to Product

View the following video showing the process of using both additive and subtractive manufacturing to go from a concept to a product. Thank you to our friends at Renishaw for sharing this wonder video.

The trophy was recently awarded to the team of Lisa Brock and Yanli Zhu from the University of Waterloo and their design of biodegradable packaging made from mushroom roots. canadamakes.ca/canada-makes-ann…eam-3d-challenge/

The award was presented during the first Conference of NSERC Network for Holistic Innovation in Additive Manufacturing (HI-AM) at the University of Waterloo.

Winning team of Yanli Zhu and Lisa Brock of the University of Waterloo with Frank Defalco of Canada Makes

Students were asked to focus on creating innovative tools or products that reduce our environmental footprint using additive manufacturing in tandem with conventional manufacturing approaches.

Lisa Brock and Yanli Zhu proposed the design of biodegradable packaging made from mushroom roots and agricultural waste using binder jetting additive manufacturing. The packaging design was created by optically 3D scanning the object. Approximately 10% of materials used in additive manufacturing can be recycled into new plastics, and the rest are disposed. The options for disposal are landfills and incineration, both of which increase the amount of greenhouse gases. Therefore, new biobased biodegradable materials must be developed to decrease the negative environmental impacts of these additive manufacturing plastics. https://youtu.be/XKU-BHKuGZI


Highlights of AMUG 2018

 The Additive Manufacturers User Group, AMUG to all concerned, held its 30th anniversary event last week at the historical Union Station Hotel in St. Louis Missouri and it did not disappoint. Attending AMUG is a unique experience plain and simple. The expertise on the floor at AMUG is unrivalled and the learning opportunities endless.

Picking a high point is hard but the roaring and dizzying speed of the NASCAR racetrack as our surprise destination on Award Night is hard to beat. The evening was highlighted with the announcement of Custom Prototypes’ Mark Antony Roman Helmut as the winner of the Technical Competition Advanced Finishing.

My friend and Canada Makes partner Hargurdeep (Deep) Singh, Director of Additive Manufacturing at CAD MicroSolutions Inc. said the following, “Additive Manufacturing Users Group (AMUG) Conference 2018 was a fantastic event to connect with many end-users, engineers, business executives and pioneers of the Additive Industry. This event provided an excellent resource for learning about the future of 3D Printing and I would like to acknowledge Frank Defalco for representing Canada Makes at AMUG 2018. Canada Makes representation helped bring together many partners who are now moving forward in helping Canadian companies to enable innovation and leverage AM technologies.”

Deep was kind enough to share some of his finer photos taken during the event. See if you can spot Deep hidden is some of the pictures.

About Additive Manufacturing Users Group (AMUG)
The Additive Manufacturing Users Group’s origins date back to the early 1990s when the founding industry users group was called 3D Systems North American Stereolithography Users Group, a users group solely focused on the advancement of stereolithography (SL) use with the owners and operators of 3D Systems’ equipment. Today, AMUG educates and supports users of all additive manufacturing technologies. The primary charter of the group remains the same, but its members are much more diversified, global and focused in advancing additive manufacturing technology for rapid manufacturing and prototyping.

With AMUG’s expanded range, operators/owners of any commercial technology — stereolithography, selective laser sintering, 3D printing, DMD, DMLS, FDM, LS, SL, SLM, PolyJet, and more * — can benefit from the information exchange and professional network that AMUG offers. www.amug.com

Additive Manufacturing 101: What is it?

Image: Centre for Additive Manufacturing - The University of Nottingham

Image: Centre for Additive Manufacturing – The University of Nottingham

  Mechanical Design Engineer and Additive Manufacturing Ph.D. student

This is a series of original articles that will help you understand the origins of the technology that is commonly called 3D printing. First this introduction, followed by the seven main technologies categories (binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, vat photopolymerization) and then a design philosophy for additive manufacturing.


Additive manufacturing (AM) has been called the next Industrial revolution[1]–[3]. It is a recent technology that encompasses a wide range of different processes and materials. It is changing industries like aerospace by adjusting how engineers think about designing complex parts[4]–[6]. This revolution can take designs that have gone unchanged for decades and improve them.

AM was first conceived of in the 1970s with the first parts made in the 1980s and has had many names over the years.

  • Layer manufacturing or LM[7]
  • Rapid manufacturing or RM[8]
  • Rapid tooling[7]
  • Rapid prototyping or RP[8]
  • Laser rapid prototyping[9]
  • Solid freeform fabrication or SFF[10]
  • Direct digital manufacturing or DDM[11]
  • 3D printing or 3DP[12]

Initially, AM was used as a tool to create prototypes much more rapidly than could be done by other means and aided in the development of bringing new products to market[13], [14]. It then helped create tooling, tooling inserts, jigs and fixtures that were used in the manufacturing of end-use parts[7], [8]. It has continued to evolve and now is being used in making end-use parts such as low-volume production plastic casings, high-end consumer in-ear music monitors, GE LEAP jet engine fuel nozzles, and SpaceX SuperDraco rocket engine chambers and Falcon 9 main oxidizer valve bodies which have gone into space.

While AM has been around for three decades, it has yet to be utilized in the manufacturing of electric motors. Since the late 1800s, electric motors have seen only a small number of improvements, most of which have come from new and improved materials and new manufacturing techniques[15]–[18]. Yet the core design of motors has been relatively unchanged [19]–[21]. There is an evident opportunity to research how AM can change electric motor design. AM has the potential to produce new electric motors that can increase motor efficiencies and power densities.

Review of Additive Manufacturing

There are many different types of AM processes. Each has specific strengths and capabilities with unique areas of specialization. Regardless of the process, there are some fundamental principles that all follow.

Subtractive manufacturing usually starts out with a solid chunk of material that is larger than the final desired shape or part. Then using different tools, material is removed (or subtracted) until the final shape or part is achieved. It is important to note that casting is not considered additive or subtractive, but rather a formative process, as an existing mould or pattern is needed to create the final part.

Compared to subtractive, AM works in the opposite way. Instead of removing material to get the final desired shape or part, material is added to a build platform bit by bit. Most forms of AM follow these basic steps:

  1. Take a 3D model
  2. Slice model into layers and generate computer code
  3. Print first 2D slice and supports (if needed)
  4. Increment height
  5. Print next layer
  6. Repeat steps 4-5 until finished
  7. Post process (if needed)

A minor exception to these steps is when an AM process can deposit material in three-dimensional space. It is then not limited to just printing 2D layers one at a time[22]–[25]. AM can be a faster and more economical way to make parts, especially when the part is complex and/or made from an expensive material. These steps are still quite broad and have many details that can provide deeper insight.

AM process steps

Step 1: 3D model

The process begins with a computer-generated 3D model of the desired final part. The model needs to be capable of being printed, which means that it needs to occupy a defined volume. The part can’t be a single surface with a wall thickness of zero. Once it has thickness and volume, it then needs to be an enclosed watertight solid. This means that if water is put in the interior volume of the model, there are no holes from the inside volume to the outside surface. Even objects like a Möbius band or Klein bottle[26] can be printed as long as the single surface is thickened to have a defined watertight volume.

Figure 1: Klein bottle and Mobius band show a surface with no thickness[26]

Once the model is generated correctly, it needs to be saved to a specific file format. These specific file formats are needed in order for it to be prepared properly for printing. Thus it needs to be saved as either an STL file[27], AMF file[28] or 3MF file[29]. The STL file format has been the de facto standard since it was created in the late 1980s. However, it does have limitations which cause some problems. It does not store the units of measurement of the original model so they need to be assumed. Also, the file size becomes very large when trying to save a model with a high level of surface curvature. In response to these limitations, the American Society for Testing and Materials (ASTM) introduced the AMF file format in 2011. Then in 2013, Microsoft intended to do the same with its own 3MF format. This format became natively supported in all Windows operating systems since Windows 8.1. 3MF has since garnered considerable support from large companies such as HP, 3D Systems, Stratasys, GE, Siemens, Autodesk and Dassault Systems although it is unknown how many actively use this file format. Thus STL is still the file format of choice for almost all 3D printing. However, a newly signed liaison agreement between ASTM and the 3MF Consortium may bridge some differences between AMF and 3MF and create one new standard file format to replace STL.

Step 2: Prepare for printing

Secondly, special software is needed to turn that 3D model into data that a 3D printer can recognize and use. This usually involves cutting or slicing the model into many digital layers. Each layer is then converted into either a 2D image or into a set of 2D tool paths. The spacing between these slices will determine the printed thickness of the layers that will be seen in the final part. These layers partially determine the final surface quality and surface roughness of the final part, as well as how long the part will take to print. This height is an important compromise between print speed and surface quality, thus they are generally very thin. An average across several processes is around 100 µm or 0.1mm[11]. Depending on the AM process, the range of layer heights is vast. In two-photon polymerization, layer features as small as 40nm or 0.00004mm[30] can be created which is smaller than the wavelength of ultraviolet light[31]. Microwave sintering can create layers up to 5cm or 50mm in depth[32]. Regardless, when working in a process, the thicker the layer, the faster the build speed but the rougher the exterior becomes. Hence layer height is a trade-off between speed and quality.

Figure 2: T shaped structure with supports[33]

Depending on the geometry of the model and the AM process involved, support structures may be needed[11]. These support structures anchor overhanging areas of the final part to the build platform or other solid portions of the part. Imagine printing a 3D letter “T” starting from the bottom moving up to the top. The 3D printer would be able to print the main body of the letter without any issue. But as soon as it gets to the top, it would have a significant challenge to print the rest properly. The reason being there is nothing that would support the outreached arms of the letter. Thus some type of support structure is needed to be built up at the same time as the main body. When it reaches the point to print the arms, it would then be able to print on top of the main body and the support structure. An alternative option is to design the part for AM so that it does not need supports. For example, if the arms of the “T” were angled upward from the main body, the main body then becomes the support structure. The part would look more like the letter “Y”. Thus the letter Y could be considered a 3D print-optimized version of the letter T that doesn’t need support.

Steps 3-6: Printing

The specifics of printing depend on the process involved and will be described in much more detail further on in the report. Regardless, the 3D printer uses the computer code generated in the previous step to create an initial solid layer of material onto a build surface. The build surface could be a solid platform onto which the part is printed or a layer of unsolidified material that will support the part. This first layer is the first slice of the original 3D model that was calculated by the computer software in step two. Once the first layer is printed, the machine increments to the next height ready to print the next layer. This new height corresponds to the second slice of the original 3D model. The printer then creates a new solid layer based on that second slice. This new solid layer bonds to the previous layer making it one solid piece. The process repeats layer by layer until the final layer is finished. If the bonds between layers are weak, the build could fail or result in a structurally weak part. These anisotropic material properties can manifest as a weaker bond between layers than within layers[34]–[36] but can lead to beneficial properties for magnetic applications[37]. There are some processes strategies[38], [39] and research projects[40] that are addressing this concern with strength.

Step 7: Post-process

Finally, once a part is finished, it is removed from the build chamber and post-processed. This post process could take any number of forms. Some processes require removing support materials[8], [41]. A few need to post cure the material to ensure a fully solid part[42]. Laser melted parts need heat treating to relieve internal stresses that build up in the build process[43]. Binder jetted parts can be placed in an oven to remove a sacrificial binder used in printing. Others are placed in ovens and sintered to increase the strength and density of the part[44]. Infiltrants like glues or metals can be added to give more strength and higher density to the part[42], [44]. Parts can undergo a chemical reaction to change the material for different material properties[45]. Parts can be smoothed by chemicals[42], by blasting or tumbling to remove layer lines. Or parts can have some artistic flourish through hand painting, hydrographics[46], or even electroplating.

Methods and processes

Only recently was a standard designed for classifying the different ways something can be made using AM. In 2009, the American Society for Testing and Materials (ASTM) created a committee to define standards in AM technology[47]. In 2010 they defined seven main technologies used in AM. This was given the standard designation: F2792–12a[48]. As of December 2015, these ASTM standards were replaced with a new standard. ASTM joined with the International Organization for Standardization (ISO) to form ISO/ASTM 52900:2015[49]. Despite having seven uniquely defined categories, there are many different processes within each category. Regardless, the overall method and the underlying principles discussed previously still apply. Variance exists only with the materials, deposition of layers, and methods of adhesion.

These seven categories will be explored in depth with their:

  • definition
  • alternate industrial or trade names
  • a brief history
  • description of method and materials
  • advantages and disadvantages

These seven categories are (in alphabetical order):

  1. binder jetting
  2. directed energy deposition
  3. material extrusion
  4. material jetting
  5. powder bed fusion
  6. sheet lamination
  7. vat photopolymerization

The following are some common terms that are used when talking about these processes. They come from the ISO/ASTM definitions and are used throughout the seven category descriptions[49].

3D printer: the machine used for 3D printing.

Build chamber: the enclosed location within the 3D printer where the parts are fabricated.

Build platform: a base which provides a surface upon which the building of the part is started and supported throughout the build process.

Build space: the location where it is possible for parts to be fabricated, typically within the build chamber or on a build platform.

Build surface: the area where material is added, normally on the last deposited layer or for the first layer, the build surface is often the build platform.

Build volume: the total usable volume available in the machine for building parts.


[1]    N. Hopkinson, R. Hague, and P. Dickens, Rapid manufacturing: an industrial revolution for the digital age. Chichester, England: John Wiley & Sons, 2006.

[2]    T. S. Srivatsan and T. S. Sudarshan, Additive Manufacturing: Innovations, Advances, and Applications. Boca Raton, Florida, USA: CRC Press/Taylor and Francis, 2015.

[3]    B. Berman, “3-D printing: The new industrial revolution,” Business Horizons, vol. 55, no. 2, pp. 155–162, Mar. 2012.

[4]    B. Lyons, Additive Manufacturing in Aerospace: Examples and Research Outlook, vol. 42, no. 1. Washington, D.C., USA: National Academy of Engineering, 2012.

[5]    A. K. Misra, J. E. Grady, and R. Carter, “Additive Manufacturing of Aerospace Propulsion Components,” Additive Manufacturing for Small Manufacturers, Pittsburgh, Pennsylvania, USA, Oct. 2015.

[6]    J. Coykendall, M. Cotteleer, J. Holdowsky, and M. Mahto, “3D opportunity in aerospace and defense: Additive manufacturing takes flight,” Deloitte University Press, Westlake, Texas, USA, Jun. 2014.

[7]    G. N. Levy and R. Schindel, “Overview of layer manufacturing technologies, opportunities, options and applications for rapid tooling,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 216, no. 12, pp. 1621–1634, Jan. 2002.

[8]    G. N. Levy, R. Schindel, and J. P. Kruth, “Rapid Manufacturing And Rapid Tooling With Layer Manufacturing (LM) Technologies, State Of The Art And Future Perspectives,” CIRP Annals – Manufacturing Technology, vol. 52, no. 2, pp. 589–609, Jan. 2003.

[9]    M. Shiomi, A. Yoshidome, F. Abe, and K. Osakada, “Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders,” International Journal of Machine Tools and Manufacture, vol. 39, no. 2, pp. 237–252, Feb. 1999.

[10]  J. J. Beaman, J. W. Barlow, D. L. Bourell, R. H. Crawford, H. L. Marcus, and K. P. McAlea, Solid Freeform Fabrication: A New Direction in Manufacturing. Boston, Massachusetts, USA: Springer US, 1997.

[11]  I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies: Rapid Prototyping to Direct Digital Manufacturing. New York, New York, USA: Springer, 2014.

[12]  J.-P. Kruth, M. C. Leu, and T. Nakagawa, “Progress in Additive Manufacturing and Rapid Prototyping,” CIRP Annals – Manufacturing Technology, vol. 47, no. 2, pp. 525–540, 1998.

[13]  G. N. Levy, “SLS-Layer Manufacturing a Powerful Complementary Technology In the RPD (Rapid Product Development) Cycle,” Journal for Manufacturing Science and Production, vol. 3, no. 2–4, pp. 159–166, Jan. 2000.

[14]  A. Bernard and A. Fischer, “New Trends in Rapid Product Development,” CIRP Annals – Manufacturing Technology, vol. 51, no. 2, pp. 635–652, Jan. 2002.

[15]  W. Tong, Mechanical design of electric motors. Boca Raton, Florida, USA: CRC Press/Taylor and Francis, 2014.

[16]  A. Hughes and B. Drury, Electric motors and drives: fundamentals, types and applications, 4th ed. Oxford, United Kingdom: Newnes Press, 2013.

[17]  R. C. O’Handley, Modern Magnetic Materials: Principles and Applications, vol. 830622677. New York, New York, USA: Wiley-Blackwell, 2000.

[18]  O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu, “Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient,” Advanced Materials, vol. 23, no. 7, pp. 821–842, Feb. 2011.

[19]  W. J. King, “The development of electrical technology in the 19th century,” United States National Museum Bulletin, vol. 228, pp. 233–407, 1962.

[20]  M. Doppelbauer, “The invention of the electric motor 1800-1854,” [Online], 25-Sep-2014. [Online]. Available: http://www.eti.kit.edu/english/1376.php. [Accessed: 04-Dec-2015].

[21]  B. Drury, Control techniques drives and controls handbook, 2nd ed. London, United Kingdom: The Institution of Engineering and Technology, 2009.

[22]  P. F. Yuan, H. Meng, L. Yu, and L. Zhang, “Robotic Multi-dimensional Printing Based on Structural Performance,” in Robotic Fabrication in Architecture, Art and Design 2016, D. Reinhardt, R. Saunders, and J. Burry, Eds. Cham, Switzerland: Springer International Publishing, 2016, pp. 92–105.

[23]  X. Song, Y. Pan, and Y. Chen, “Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing,” Journal of Manufacturing Science and Engineering, vol. 137, no. 2, p. 021005, Apr. 2015.

[24]  F. B. Coulter and A. Ianakiev, “4D Printing Inflatable Silicone Structures,” 3D Printing and Additive Manufacturing, vol. 2, no. 3, pp. 140–144, Sep. 2015.

[25]  R. J. A. Allen and R. S. Trask, “An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot,” Additive Manufacturing, vol. 8, pp. 78–87, Oct. 2015.

[26]  K. Polthier, “Imaging maths-Inside the Klein bottle,” plus magazine, vol. 26, Cambridge, England, 2003.

[27]  J. Allison, “Re: History of .stl format,” [Online email], 15-Jan-1997. [Online]. Available: http://www.rp-ml.org/rp-ml-1997/0091.html. [Accessed: 05-Feb-2016].

[28]  J. D. Hiller and H. Lipson, “STL 2.0: A Proposal for a Universal Multi-Material Additive Manufacturing File Format,” in Proceedings of the 20th Solid Freeform Fabrication Symposium (SFF), Austin, Texas, USA, 2009, no. 1, pp. 266–278.

[29]  “What is 3MF?,” 3MF Consortium, 2016. [Online]. Available: http://www.3mf.io/what-is-3mf/. [Accessed: 11-Jan-2016].

[30]  L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science, vol. 324, no. 5929, pp. 910–913, May 2009.

[31]  D. Halliday, R. Resnick, and J. Walker, Fundamentals of physics extended, 10th ed., vol. 1. Hoboken, New Jersey, USA: John Wiley & Sons, 2014.

[32]  L. A. Taylor and T. T. Meek, “Microwave Sintering of Lunar Soil: Properties, Theory, and Practice,” Journal of Aerospace Engineering, vol. 18, no. 3, pp. 188–196, Jul. 2005.

[33]  D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage, “Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting,” Journal of Laser Applications, vol. 26, no. 1, p. 012004, 2014.

[34]  B. E. Carroll, T. A. Palmer, and A. M. Beese, “Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing,” Acta Materialia, vol. 87, pp. 309–320, Apr. 2015.

[35]  A. Bagsik and V. Schöoppner, “Mechanical Properties of Fused Deposition Modeling Parts Manufactured with ULTEM 9085,” in Proceedings of the 69th Annual Technical Conference of the Society of Plastics Engineers 2011 (ANTEC 2011), Boston, Massachusetts, USA, 2011, pp. 1294–1298.

[36]  W. Cooke, R. Anne Tomlinson, R. Burguete, D. Johns, and G. Vanard, “Anisotropy, homogeneity and ageing in an SLS polymer,” Rapid Prototyping Journal, vol. 17, no. 4, pp. 269–279, Jun. 2011.

[37]  M. Garibaldi, I. Ashcroft, M. Simonelli, and R. Hague, “Metallurgy of high-silicon steel parts produced using Selective Laser Melting,” Acta Materialia, vol. 110, no. MAY, pp. 207–216, May 2016.

[38]  B. A. Fulcher, D. K. Leigh, and T. J. Watt, “Comparison of AlSi10Mg and Al 6061 Processed Through DMLS,” in Proceedings of the 25th Solid Freeform Fabrication Symposium (SFF), Austin, Texas, USA, 2014, pp. 404–419.

[39]  P. Mercelis and J. Kruth, “Residual stresses in selective laser sintering and selective laser melting,” Rapid Prototyping Journal, vol. 12, no. 5, pp. 254–265, Oct. 2006.

[40]  S. Fathi, P. Dickens, R. Hague, K. Khodabakhshi, and M. Gilbert, “Jetting of Reactive Materials for Additive Manufacturing of Nylon Parts,” in Proceedings of the 25th International Conference on Digital Printing Technologies and Digital Fabrication (NIP 25), Louisville, Kentucky, USA, 2009, vol. 2009, no. 2, pp. 784–787.

[41]  S. S. Crump, J. W. Comb, W. R. Priedeman Jr, and R. L. Zinniel, “Process of support removal for fused deposition modeling,” U.S. Patent 5,503,785, 02-Apr-1996.

[42]  S. Upcraft and R. Fletcher, “The rapid prototyping technologies,” Assembly Automation, vol. 23, no. 4, pp. 318–330, Dec. 2003.

[43]  E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Materials & Design, vol. 34, pp. 159–169, Feb. 2012.

[44]  J.-P. Kruth, G. Levy, F. Klocke, and T. H. C. Childs, “Consolidation phenomena in laser and powder-bed based layered manufacturing,” CIRP Annals – Manufacturing Technology, vol. 56, no. 2, pp. 730–759, Jan. 2007.

[45]  A. E. Jakus, S. L. Taylor, N. R. Geisendorfer, D. C. Dunand, and R. N. Shah, “Metallic Architectures from 3D-Printed Powder-Based Liquid Inks,” Advanced Functional Materials, vol. 25, no. 45, pp. 6985–6995, Dec. 2015.

[46]  Y. Zhang, C. Yin, C. Zheng, and K. Zhou, “Computational hydrographic printing,” ACM Transactions on Graphics (TOG) – Proceedings of ACM SIGGRAPH 2015, vol. 34, no. 4, pp. 131:1–131:11, Jul. 2015.

[47]  W. E. Frazier, “Metal Additive Manufacturing: A Review,” Journal of Materials Engineering and Performance, vol. 23, no. 6, pp. 1917–1928, Jun. 2014.

[48]  “ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015),” ASTM International, West Conshohocken, Pennsylvania, USA, 2012.

[49]  “ISO/ASTM 52900:2015(en), Additive manufacturing — General principles — Terminology,” International Organization for Standardization (ISO), Geneva, Switzerland, 2015.

Canada Makes Forum: Additive Manufacturing Supply Chain & Logistics

CME Canada Makes and the University of Waterloo Present: Additive Manufacturing Supply Chain & Logistics Forum

How 3D Printing/Additive Manufacturing is impacting the supply chain and industrial logistics of manufacturing.Canada Makes AM Forum

This one-day forum is to feature industrial leaders in supply chain and logistics in the additive manufacturing/3D Printing sector. CME Canada Makes continues offering insight and expertise for Canada’s industry leaders with the mission of assisting companies to adopt additive manufacturing, a key component of Industry 4.0 implementation.

Supply chains are and will be affected in significant ways as the costs of storing massive amounts of inventory and global shipping are reduced and more parts are customized printed on demand. Key sectors of our economy are being affected in profound ways and Canada Makes is bringing in experts to discuss issues affecting and sometimes disrupting manufacturers’ supply chain. The Canada Makes Forum will focus on Medical, Aerospace, Automotive and Energy and their supply chain.

Join the Canada Makes Forum Networking scrum

Networking with Canada’s AM sector professionals will be front and centre to the Forum. Experts representing various key features to the AM supply chain will be on-site to answer questions on how 3D printing is changing global supply chains.

Canada Makes would like to thank the following companies for joining the Canada Makes Forum networking scrum: AMM, Anubis 3D, Axis Prototype, Cimetrix, CRIQ, Expanse Microtechnologies, Jesse Garant Metrology Center, NRC, Precision ADM, Tiger-Vac.

Date: November 22
Time: 8 a.m. – 4:00 p.m.
Location: Federation Hall (Building #35)
University of Waterloo
200 University Ave W, Waterloo, ON

$100 CME Members/Canada Makes Partners
$150 CME / Canada Makes Non-Members

Local accommodation Delta Waterloo

Register here


Time Topic Speaker
8:00 a.m. – 9:00 a.m. Registration and Networking Breakfast
9:00 a.m. – 9:10 a.m. Welcome Remarks Ian Howcroft, CME Vice-President Ehsan Toyserkani UoW (TBC)
9:10 a.m. – 9:45 a.m. AM supply chain case studies – Automotive & Ground Transportation Bob Little President, Altair Canada
9:45 a.m. – 10:00 a.m. Health Canada Kinga Michno
10:00 a.m. – 10:30 a.m. Networking Break Foyer
10:30 a.m. – 11:45 a.m. Medical AM Panel – AM challenges for a new medical supply chain Miheala Vlasea – University of Waterloo (Moderator)

Martin Petrak – Precision ADM

Francois Gingras – CRIQ

Matt Parkes – Adeiss

11:45 a.m. – 12:45 p.m. Lunch Foyer
 12:45 p.m. – 1:00 pm  Special Announcement Peter Adams- Burloak
1:00 p.m. – 1:30 p.m. AM supply chain case study – To supply aerospace, it’s more than just the parts Brandon Bouwhuis – Burloak
1:30 p.m. – 2:30 p.m. Materials Panel – AM changes the supply chain for advanced materials Mathieu Brochu – McGill (Moderator)

Kevin Nicholds – Equispheres

Vladimir Paserin – Rio Tinto,

Jerome Pollack – Tekna

2:30p.m. – 3:00 p.m. Networking Break Foyer
3:00 p.m. – 3:30 p.m. Energy – AM supply chain case study Ian Klassen – Precision ADM
3:30 p.m. – 4:00 p.m. How I compete with China using AM Tharwat Fouad – Anubis 3D
4:00 p.m. – 4:10 p.m. Closing remarks Frank Defalco – Canada Makes

Canada Makes releases the Metal Additive Design Guide

A new introductory design guide for metal 3D printing is now available.

OTTAWA – Canada Makes is proud to announce the launch of the Metal Additive Design Guide and invites you to explore this great new tool. The Guide was developed to assist companies interested in trying metal additive manufacturing (AM). Following the same format as the Metal Additive Process Guide, the Metal Additive Design Guide is once again a free service that introduces concepts needed when designing for additive manufacturing (DfAD).Metal Additive Design Guide

“The Metal Additive Design Guide is easy to use, interactive, offering useful information for newcomers to this technology,” said Frank Defalco, Manager Canada Makes. “Its primary function is to help guide Canadian SMEs looking at metal AM and how it might be added to their process. It’s a great educational resource bringing great value to users and it’s just plain cool.”

Simple, yet crucial questions like, “how big can my parts be” or, “what materials can I use” are answered in this interactive app. The Guide is not designed for the experienced metal AM user but rather someone looking for quick and straightforward answers regarding DfAM.


“Canada Makes’ goal is to assist Canadian industry in adopting additive manufacturing and the Metal Additive Metal Additive Process GuideDesign Guide continues in that vain where the Metal Additive Process Guide left off,” added Defalco.

Time saving is one of the major advantage in adopting AM processes versus traditional manufacturing. Through this free resource SMEs can receive quick answers to certain concepts about metal additive. The Guide will help speed up Canada’s manufacturing sector in understanding the capabilities of metal AM. This knowledge should expand AM adoption and invigorate Canada’s burgeoning AM supply chain, growing Canada’s competitiveness.

Canada Makes would like to state how greatly it appreciates the assistance to all those that made the Metal Additive Process Guide possible.

Altair Canada Mazak
Autodesk Microfabrica
Prof. Mike Ashby, Cambridge University MIT Aero/Astro
Burloak Technologies Moog Inc
Boothroyd Dewhurst Reaction Engines
Cranfield University Renishaw
Dassault Systemes Robarts Research Institute
ExOne Senvol
FusiA solidThinking
GE Aviation U.S. Navy ManTech Navy
Gradientspace Metalworking Canter/Cocurrent
HiETA Technologies Corporation
Lawrence Livermore National Laboratory

The Metal Additive Design Guide was funded through the National Research Council Canada Industrial Research Assistance Program in accordance with the Metal Additive Demonstration Program.

Canada Makes is looking forward to partnering once again with NRC-IRAP and deliver the Metal AM Demonstration Program. The program plans to continue to expand the AM knowledge base for Canada’s manufacturing sector and work with all stakeholders to grow the sector.

The Metal Additive Manufacturing Demonstration Program is delivered by Canada Makes through funding by NRC-IRAP. The program is designed to help Canadian industries increase awareness and assist in understanding the advantages of the metal additive manufacturing (AM) technology. Canada Makes works with a group of AM experts who provide participating companies guidance of the advantages and business opportunities in terms of cost savings and efficiencies of AM.

About Canada Makes
A Canadian Manufacturers & Exporters (CME) initiative, Canada Makes is a network of private, public, academic, and non-profit entities dedicated to promoting the adoption and development of additive manufacturing in Canada. For more information on Canada Makes, please visit www.canadamakes.ca

Media contact:
Frank Defalco at frank.defalco@cme-mec.ca


Additive Manufacturing in the Canadian aerospace industry

A survey of the Canadian aerospace industry reveals a difference in perception among AM stakeholders

The following research project aims to facilitate the integration of metal additive manufacturing (AM) into the Canadian aerospace supply chain. Due to its versatility, AM could provide an interesting niche for Canadian manufacturing SMEs by allowing them to manufacture a large spectrum of metal products without an in-house foundry, forge or press. Canada is ranked among the global elite in the aerospace industry, and the development of AM expertise is essential to ensuring local suppliers remain competitive and keep pace with modern manufacturing.

HEC Montréal gathered the opinions of over 70 organizations from every level of the additive manufacturing (AM) value chain in order to measure the differences in stakeholders’ perceptions of AM-related opportunities, challenges, cost drivers and advancement initiatives.

To view the results of this survey click here.

Canada Makes would like to thank Gabriel Doré of HEC Montréal for the work on this important document. This M.Sc. thesis was supported by HEC Montréal, the Natural Sciences and Engineering Research Council of Canada and the Consortium for Research and Innovation in Aerospace in Quebec.

About HEC Montréal
HEC Montréal is a French-language business school located in Montréal, Canada. Since its founding in 1907, the School has trained more than 78,000 students in all fields of management. HEC is the business school of the University of Montreal.


Canada Makes – Canada’s Premier Additive Manufacturing Network

On behalf of the Canada Makes network, thank you for participating in this important initiative. As part of our organization’s ongoing commitment to ensuring Canadian industry is on the cutting-edge of technology and innovation, we have developed Canada Makes in order to directly network additive manufacturing companies with vendors and educational institutions.

Canada Makes is designed to facilitate dialogue through a series of events at academic institutions and industrial facilities. Participants will have the opportunity to respond to issues of the day as well as share their experiences related to additive manufacturing. Canada Makes is not targeting a particular policy, regulation, or program change, but rather it is a forum for business collaboration, and a way to find solutions to major industry challenges.

Lear more about Canada.

I sincerely thank you for your participation, insights, and support of this critical initiative. We look forward to working with you to strengthen Canada’s additive manufacturing community.


Martin Lavoie

Executive Director – Canada Makes

View an interview with Martin Lavoie in the following report on 3D printing Note: (Most of this video is in French)