Home » Posts tagged 'Additive manufacturing'

Tag Archives: Additive manufacturing

Canada Makes Additive Manufacturing Forum Presentations

On October 24th, Canada Makes successfully concluded the forth Canada Makes Additive Manufacturing (AM) Forum at the University of Waterloo. The event was highlighted by leading international and national AM experts who shared their knowledge and insight in this emerging technology. Many in attendance requested the presentations see below for links to the ones available.

See more about the event at LEADING AM EXPERTS SHOWCASED AT CANADA MAKES FORUM

Below are the presentations that we have permission to share with the public. Note: Some may have modified the content.

Names of presenter Biographies and links to presentations
Mathias Gebauer
Fraunhofer Institute for Machine Tools and Forming Technology IWU,
Group Manager AM Applications
Presentation: Laser Beam Melting drives efficiency of tooling applications
Mathias Gebauer studied mechanical engineering with a specialization in production engineering at the University of Applied Sciences in Dresden. He started his career as a casting technologist for a medium-sized automotive supplier in the field of light metal low-pressure sand casting. His responsibilities included technological support for prototype and small-series components as well as cooperation in innovation management. For more than nine years Mr. Gebauer has been working as a research associate at the Fraunhofer Institute for Machine Tools and Forming Technology IWU. At the Dresden branch, Mr. Gebauer works as a group manager in the department “Additive Manufacturing”, where he is responsible for the acquisition, planning and implementation of research and development projects regarding AM for tooling and the technological development of the laser beam melting process. Mr. Gebauer has been involved in additive manufacturing for more than twelve years.
Cassidy Silbernagel Presentation: How Additive Manufacturing has shaped the automotive sector and is driving it into the future
Cassidy has been active with 3D printing since 2010 and is about to complete an additive manufacturing PhD in the UK. He has worked for several years prior to his PhD as a mechanical design engineer and has helped develop electric motors for motorcycles and generators for wind turbines. He is researching how additive manufacturing can be used to help create electric motors. He is a two time winner in the student category of the Additive World Design Challenge in 2016 and 2017.
Dylan Yazbeck, Lab Supervisor at Jesse Garant Metrology Center Presentation: CT Scanning
Dylan Yazbeck is the lab supervisor at Jesse Garant Metrology Center. He started his Computer Tomography career working as a data analyst, focusing on scanning and analysing client products. The countless hours working in this role working with thousands of unique products allows him to oversee lab operation and work closely with clients establishing specific procedures on a project basis. The creation of new CT procedures at the company has allowed ISO9001: 2015 and AS9100 certification. The opportunity to continuously improve and learn within the CT industry matching procedure with client expectation and requirement makes Dylan excited to continue his role.
Ed Bernard, Director of Research & Development at Crest Mold Technologies Inc Speaking notes: Panel Conformal Cooling – Facts vs Myths and Overcoming Obstacles
Ed Bernard has over 40 years of experience in the Moldmaking Industry, having received numerous awards and accolades for innovative achievements and leadership within the manufacturing sector, and is currently the Chair of the Research & Development Committee and Director of the Moldmaking Cluster Collaboration Network of the Canadian Association of Moldmakers as well as the Manager of Scientific Research & Experimental Development at Crest Mold Technology Inc. where he has been experimenting with various different types of advanced manufacturing, essential to conformal thermal systems, for the application of cyclic process thermodynamics.
  Steve Slusher, Executive, AddWorks Manufacturing Development Leader (GE) Speaking notes: Prototyping to Production
As an Executive leader within our AddWorks organization, Steve Slusher is leading a team of design and manufacturing engineers along with data scientist whom partner with our customers to industrialize their additive manufacturing process. In this role he championed the upgrades of the M2 product line and brought analytics to the forefront to improve both machine and product repeatability. Steve has been with GE for 16 years with roles in design, test and certification. He has led teams on several GE Aviation Commercial product lines. Since joining GE Additive a year and a half ago Steve has established a multi-regional team to industrialize the existing laser and electron beam product line and the surrounding processes. The team has worked with both internal and external customers to help them advance their additive journey into piece part production.
C. Annette Langhammer, Director of Advanced Engineering NMC Dynaplas, Toronto PresentationConformal Cooling in Automotive/Mobility
BA Econ, York; Toolmaker Ticket Magna; 30 yrs primarily Magna/Decoma; NMC Dynaplas – Technical Captive Injection Molder; focusing on assisting customers migrate to high performing thermoplastic materials including lightweighting, design flexibility, recyclability, performance improvements.
  Mathieu Fagnan, Pratt & Whitney Canada Presentation: Additive Manufacturing at Pratt & Whitney Canada
Mathieu has been involved with technology since his teens, welding bicycle frames in his parents shed. He fueled his passion for making stuff by completing a technical degree in industrial engineering that saw him entered the world of composites manufacturing, mostly in process optimization for helicopters components. Still hungry for knowledge, he completed a bachelor in Mechanical Engineering and moved toward faster moving vehicles, contributing in core design, supply chain technical support and manufacturing equipment technology for turbine engines at Pratt & Whitney Canada. Mathieu now leads the deployment of Additive Manufacturing Technologies at P&WC. With his team, Mathieu is taking over the challenge of building the whole design system to incorporate AM to the P&WC toolbox of qualified manufacturing processes.
Roger Eybel, Materials and Processes Group Leader/Safran Expert
Safran Landing Systems
Presentation: Safran Helicopter Engines process for AM combustion parts
Roger Eybel is a graduate of Queen’s University (Canada) in Metallurgical Engineering (1986). Mr. Eybel has been with Safran approximately 29 years and is presently a senior Safran Expert (Senior Technical Fellow). His work on emerging technology projects has included new alloy development (i.e. AF1410, AerMet 100, beta titaniums, etc.), new coatings, metal matrix composites, solid state welding and now additive manufacturing. Mr. Eybel has long been involved in SAE metals committees which have included AMEC, ASEC, P17,B, D, E, F,G and additive manufacturing, and presently a sponsor of  three AMS documents.
François Charron-Doucet, Director of Quality Control and Scientific Director at Groupe AGÉCO Presentation: Greening the Aerospace Supply Chain
Mr. Charron-Doucet is Director of Quality Control and Scientific Director at Groupe AGÉCO. François Charron-Doucet received a diploma in engineering physics in 2004 (École Polytechnique de Montreal), and obtained his Master’s degree in 2007 from the same university with a thesis on greenhouse gas project quantification using Life Cycle Assessment. He held a position at the CIRAIG, Interuniversity Research Centre in Life Cycle Analysis, from 2007 to 2010 as research associate and as scientific director at Quantis Canada (now Groupe AGECO) from 2010 to 2015. He is a CSA Group Certified GHG Verifier and a recognized verifier for several North American and European environmental product declaration programs, including the International EPD System (Sweden) and CSA (Canada). He is member of the CAC/ISO/TC207/SC3 – Environmental Labelling Canadian mirror committee.
Thomas A. Houle, Director, LUMEX NA for Matsuura USA Presentation: Conformal Cooling LUMEX NA for Matsuura
Thomas Houle is an experienced Manufacturing Professional with a demonstrated history of success in the tooling and plastics industry. He is skilled in new product development, Program Management, Sales and Business development, new Technology adoption and Manufacturing systems and experienced with in-mold sensing and monitoring to measure mold and part performance. Houle has 27 years of continuing experience in the injection mold and molding industry developing turn-key projects for customers all around the globe. In his role as Director, LUMEX NA for Matsuura USA, Tom leverages his experience in operational excellence and continues to develop a cutting-edge, innovative U.S. presence for Matsuura’s Hybrid AM Manufacturing solution. He inspires a culture of continuous improvement by defining goals, developing strategies, implementing systems and measuring performance results for the LUMEX product.
  Olivier Marcotte, 
Agent de recherche et développement
Presentation: Additive Manufacturing at the CRIQ and recent Initiatives
Olivier Marcotte holds a master’s degree in mechanical engineering. He has held the position of research and development officer at the Center de recherche industrielle du Québec (CRIQ) since 2009. As such, he participated in the establishment of a metal additive manufacturing laboratory for industrial applications in 2014. This laboratory aims to familiarize Quebec companies with this technology of the future by providing access to the equipment and expertise of CRIQ staff. For close to 2 years, he has been working on the development of a new additive manufacturing laboratory that will be dedicated to the medical applications of 3D printing. This laboratory, created in partnership with a group of local hospitals, will aim to develop new applications of 3D printing in the medical field, be it patient-specific metal implants, cutting guides, anatomical models or other applications of interest.

Thank you once again to our Sponsors:

 

Canada Makes Scrum Partners

Leading AM experts showcased at Canada Makes Forum

On October 24th, Canada Makes forth Additive Manufacturing Forum successfully concluded by bringing Canadian and international AM experts together under one roof at the University of Waterloo. The level of discourse featured during the day in booth the networking and presentations signals Canada has taken big steps towards developing world-class Additive Manufacturing (AM) capabilities.

Mathias Gebauer, Fraunhofer Group Manager for AM applications

The event kicked off with Germany’s Mathias Gebauer from Fraunhofer IWU who gave a great presentation covering some of the fascinating things they are doing. His presentation was highlighted by topics such as embedding thermocouple sensors directly into SLM parts while the SLM part is being built, selectively removing powder from a SLM build and replacing it with a second material in paste form which is then processed to become solid.

Following this was Cassidy Silbernagel, one of Canada’s rising stars in AM, who reviewed Design for AM guidelines as well as presenting a past, present and future look at AM in the automotive industry.

After some networking with leading AM companies taking part in this years Canada Makes Scrum was the panel on conformal cooling. The panel, moderated by Ed Bernard of Crest Mold and including panelists Wes Byleveld of Exco Engineering, Annette Langhammer of NMC Dynaplas and Tom Houle from Matsuura Machinery, who discussed the work that is happening with plastic and metal dies in Canada, which is currently saving a lot of money to manufacturers in terms of reduced cycle times, scrap reduction, and increased machine up-time due to more robust and reliable processes. Listening to this session one can certainly believe that Conformal cooling is Canada’s entry into seeing success with AM technology.

Peter Adams, CEO & President Burloak Technologies

Also presenting were Dylan Yazbeck who gave us a glimpse into the world of computed tomography for AM parts. He was followed by one of the day’s keynote speakers, Peter Adams CEO & President Burloak Technologies, who shared some of the challenges faced in the emerging AM market and what Burloak Technologies is currently working on in the aerospace industry. He also gave us a peak at their new 60,000 sq foot facility and described how some of the 100 million plus investment by Samuel &Sons will be used.

One of the highlights of the day was to hear a great panel moderated by Mark Kirby of Renishaw Canada and included panelists Roger Eybel of Safran Safran Landing Systems, Mathieu Fagnan of Pratt & Whitney Canada as well as Steve Slusher from AddWorks. They discussed the some of the challenges faced by the Aerospace setor in adopting AM.

Left to right, Roger Eybel, Materials and Processes Group Leader/Safran Expert Safran Landing Systems, Mark Kirby Renishaw Canada, Mathieu Fagnan, Enterprise Manager, Additive Manufacturing Technologies Pratt & Whitney Canada, Steve Slusher, Executive, AddWorks Manufacturing Development Leader (GE).

Martin Petrak, President & CEO Precision ADM

Finishing off the day were presentations from François Charron-Doucet on positive environmental impacts, which the AM industry can take advantage of, as well as updates in the medical field from Martin Petrak from Precision ADM and Olivier Marcotte of the CRIQ.

Overall, it was a great day with plenty of high-level networking and information sharing from all of those in attendance.

We once again would like to thank our sponsors, CRIQ, Burloak Technologies and BDO Canada who helped make this a day well spent.

Stay tuned for our next event!


Canada Makes Scrum participating companies

DMG MORI joins Canada Makes

Canada Makes is pleased to welcome DMG MORI Canada as its newest Leadership level partner. A global leader in machine tool manufacturing, DMG MORI offers a unique product range of metal additive manufacturing machines, including powder bed Selective Laser Melting (SLM) and Laser Deposition Welding on the LASERTEC 3D systems.

“Including the world-class DMG MORI in the Canada Makes network is a big plus for us,” said Frank Defalco, Manager Canada Makes. “The capabilities offered by combining their different process chains available for additive is truly inspiring and I look forward to working with DMG MORI in bringing innovation solutions to Canadian industry.”

DMG MORI has successfully performed on the additive manufacturing machine market for over five years with the laser deposition welding and metal-cutting machining with the LASERTEC 3D hybrid series. In addition to establishing and expanding the digital process chain DMG MORI has also developed a full-line in additive manufacturing. While the LASERTEC 65 3D is geared solely towards laser deposition welding as a complement to existing machining on the shop floor, the LASERTEC 30 SLM 2nd Generation with its new Stealth design expands the portfolio to include powder bed using selective laser melting.

The portfolio includes four complete process chains for additive processes using powder nozzle or powder bed technologies.

Thanks to the combination of additive manufacturing technologies with conventional CNC machines DMG MORI has realized four individual needs-based process chains.

On January 26, 2016, Canada Makes lead a trade mission to Germany and we were lucky to have a full day tour of the DMG MORI open house at DECKEL MAHO Pfronten to see the latest innovations and groundbreaking technologies on offer. Learn more here http://canadamakes.ca/dmg-mori-technology-for-the-future/

About DMG MORI

The DMG MORI group is a global manufacturing leader of CNC machine tools. The product range includes high-tech turning and milling machines, as well as Advanced Technologies, such as ULTRASONIC, LASERTEC, ADDITIVE MANUFACTURING, automation and complete technology solutions for the Automotive, Aerospace, Die & Mold and Medical industries. The APP-based control and operating software (CELOS) and innovative products of Software Solutions enable DMG MORI to shape the future for Industry 4.0. DMG MORI also supports its customers with a wide range of training, repair, maintenance and spare part services covering the entire machine life cycle. As a ‘Global One Company’ with over 12,000 employees, DMG MORI is present in 79 countries around the world. A total of 157 international locations are in direct contact with customers. https://ca-en.dmgmori.com

-30-

Agile announces the addition of Markforged Metal X 3D Printer

Agile manufacturing inc.Uxbridge, Canada, September 26th, 2018 – Agile Manufacturing, Inc. (Agile), a leading provider of 3D Printing & Rapid Manufacturing solutions, announces today the installation of a Markforged Metal X 3D Printer.  The Metal X represents a complete metal solution for end to end manufacturing.  The Metal X makes a great addition to Agile’s legion of production 3D Printers.

Impeller

Agile will distribute the full Metal X manufacturing solution across Canada and welcomes visitors to their facility for live demonstrations of the technology. Agile will also run production and prototype parts for their clients globally.  This breakthrough in Metal 3D Printing makes manufacturing easier and more affordable. The Metal X is currently shipping with 17-4 PH Stainless Steel with several materials to follow in the coming months including: H-13, A-2 & D-2 tool steels, Inconel 625, Titanium and Aluminum.

“The Metal X enables our clients to produce low volume production metal parts and tooling that would be very costly using traditional manufacturing methods like CNC or casting.” stated Richard Smeenk, Agile’s President.

Mold

About Agile
Agile Manufacturing Inc. provides 3D Printed parts, 3D Printers and materials.  Agile is the largest 3D Printing Service Bureau in Canada with 22 in-house production printers ranging from Stereolithography (SLA), to Laser Sintering (SLS), Figure 4 No Contact DLP, NextDent 5100 Dental Printers, MultiJet Printing (MJP), ColorJet Printing (CJP), Direct Metal Printing (DMP), Metal X, Markforged Carbon Fiber Filaments (CFF) and Filament Deposition.

Markforged package

With over 200,000 hours of annual Additive Manufacturing capacity (or 4.2 billion cubic inches per year) Agile is well positioned to meet your 3D Printing needs.  Agile sells New and Used Professional & Production 3D Printers across all technologies and we stock all materials in-house for immediate delivery. Agile Distributes 3D Systems full line of 3D Printers including SLA, SLS, MJP, Figure 4, NextDent 5100, DMP and the full line of Metal and Composite 3D Printers from Markforged.  Agile has been operating in the Greater Toronto Area for 16 years and now has a new facility in Pella Iowa serving customers across Canada and the USA, with select customers on 6 continents.  Agile Manufacturing’s team of 26 Additive Manufacturing (AM) and 3D Printing (3DP) experts is led by Richard Smeenk a 3D Printing veteran since 1996. www.agile-manufacturing.com

-30-

University of Alberta joins Canada Makes

Canada Makes is pleased to announce the addition of the University of Alberta to its list of world-class Additive Manufacturing research institution partners. The University of Alberta is a Top 100 university in the world and one of seven Canadian university partners in the NSERC/CFI Holistic Innovation in Additive Manufacturing (HI-AM) Network.

“Canada Makes is very fortunate to have the University of Alberta as part of our network,” said Frank Defalco, Manager Canada Makes. “We look forward to working with this great institution in developing additive manufacturing capabilities in Alberta as well as all of Canada.”

The University of Alberta has a mission to discover, disseminate and apply new knowledge through teaching and learning, research and creative activity, community involvement, and partnerships. U of A gives a national and international voice to innovation in Alberta, taking a lead role in placing Canada at the global forefront.

The University of Alberta and Innotech Alberta are hosting a two-day workshop addressing Additive Manufacturing in Alberta. Be sure to register and be part of this important event and help Alberta become more innovative and competitive. Learn more here http://canadamakes.ca/additive-manufacturing-alberta-workshop/

About the University of Alberta
The University of Alberta is a public research university with more than 38,000 students from 148 countries located in Edmonton, Alberta, Canada. Founded in 1908 by Alexander Cameron Rutherford, the first premier of Alberta, and Henry Marshall Tory, its first president. It has 388 undergraduate programs, 500 graduate programs as well as 100+ institutes and centres. ualberta.ca

Canada Makes 3D Challenge 2018-19


Canada Makes is again offering its Pan-Canadian 3D Printing Design Challenge for postsecondary students enrolled in a Canadian college or university. Winners to be announced in the Spring of 2019.

Canada Makes 3D Challenge Trophy

Lisa Brock and Yanli Zou of the University of Waterloo are now part of the Canada Makes trophy’s history

Last year’s challenge was “Design solutions for a sustainable future” and is again this year. Five finalist from last year’s challenge each received $1,000 for their design. Learn more about the designs at Canada Makes announces finalists for its 3D Challenge.

The adoption of digital manufacturing technologies such as 3D printing requires new approaches to skills and training focused on building experiential and collaborative learning. To foster this objective, the Canada Makes 3D Challenge will challenge university/college teams to design a part and compete for a full one-year paid internship from a Burloak Technologies and cash prizes.

Theme: Design solutions for a sustainable future

Description: Additive manufacturing is empowering new ways to re-think design and fabrication through innovative materials, optimized structures and enhanced functionality. There is currently a drive to think about how our society is changing in the wake of population growth and sustainability concerns. Canada Makes invites student designers to participate in the 3D Design Competition with a focus on creating innovative tools or products that reduce our environmental footprint using additive manufacturing in tandem with conventional manufacturing approaches.

Such examples include (and are not limited to):

  • lightweight structures or new designs of automotive or aerospace components that reduce overall weight and fuel consumption
  • innovative components that optimize fuel or energy consumption
  • energy harvesting devices with innovative features
  • multi-purpose objects that simplify everyday life and reduce waste
  • wearable tools or objects that enhance mobility efficiency and reduce waste

Pre-Register is closed

Phase I – Students who wish to participate must pre-register by November 30, 2018 indicating their intent to submit a final design.

Phase II – Participants will submit a design based on the provided criteria. These designs will be analyzed and evaluated via simulation with the top finalists announced, recognized and awarded their cash prize. Deadline for submissions is February 22, 2019.

Phase III – The top five finalists will have their design fabricated and tested, and will be invited to either make a live or video presentation and have a chance at more prizes including a chance at a one-year paid internship at Burloak Technologies.

Registration Process

After Pre-registrations Student/Team (no more than 3 students per team) will submit the following by February 22, 2019:

  • Cover sheet
  • 150 word description/summary
  • STL files and source files from any CAD program
  • An image of the current product design (if applicable) and a detailed description of the changes
  • Business case (800 word):
  • Justification of the product redesign, value added as measured by reduced
  • Time to produce
  • Cost impact
  • Sustainability
  • Energy consumption or renewable energy generation
  • Reduced materials
  • Promoting green design
  • Participants should define the unmet need in society or explain the waste in current solutions
  • Precisely what is being proposed
  • Why it is am improvement over existing products

Judges will choose the top 5 finalists and Canada Makes will arrange to fabricate their designs to be showcased at a final event in the spring of 2019. The finalist/teams will receive a cash prize and a chance at a one-year paid internships at Burloak Technologies.

The Challenge will have clear winning criteria and be judged on the merit of their application.

Submitted designs will be evaluated via simulation, and the top five designs will be selected for fabrication and testing based on the required criteria. The winning entries will best satisfy all of the performance criteria.

Eligibility Rules and Submission Guidelines

Terms of Acceptance

Responsibility for Submission

Privacy

Contact: Frank Defalco frank.defalco@cme-mec.ca

SLM Solutions joins Canada Makes

Canada Makes is pleased to announce SLM Solutions has joined its Additive Manufacturing (AM) network. SLM Solutions provides powder bed fusion machinery and applications development for metal prototypes and manufacturing production. It focuses on the development and distribution of innovative, production-oriented metal additive manufacturing systems.

“SLM Solutions was the first to offer overlapping multi-laser systems for the selective laser melting process and Canada Makes welcomes the addition of this proven innovator as its newest partner,” said Frank Defalco, Manager Canada Makes.

SLM Solutions is a leading provider of industrial selective laser melting equipment. With Canadian distribution partners, like Spark & Co and an AM technology center in Detroit, SLM Solutions partners with customers to aid in the development of projects and reduce the learning curve for success with metal additive manufacturing.

SLM Solutions takes a vested interest in your company’s long-term success with metal AM, providing support and knowledge-sharing that elevates use of the technology to the next level. SLM systems, available in multiple sizes, are utilized in a variety of industries around the world. Their open system architecture allows users to tailor their process and SLM Solutions’ extensive experience and technical know-how help drive innovative product developments and support customers’ competitive creativity.

About Spark & Co
Spark & Co works with Tier 1 and Tier 2 Aerospace firms to manufacture parts for major Aerospace manufacturers such as Boeing, Bombardier, Airbus, Embraer, and more. https://www.spark-co.com

Additive Manufacturing Alberta Workshop


InnoTech Alberta, in conjunction with Canada Makes and the University of Alberta, is hosting a two-day workshop addressing Additive Manufacturing in Alberta.

How do we work together to become more innovative and competitive?  What tools do we need to adopt?  What changes do we need to make?

The first day is a training course presented by AddWorks from GE Additive.  The full day course will discuss the concepts and tools necessary to adopt additive manufacturing.

The second day highlights a number of invited speakers and panelists to showcase their best practices in adoption of additive manufacturing.

This event is targeted towards designers, engineers, fabricators, innovators, and owners.

Dates:
Wednesday, October 10, 2018
Registration and continental breakfast – 8am
Course – 9am-4pm

Thursday, October 11, 2018
Registration and continental breakfast – 8am
Workshop – 8:45am-4pm
Reception, Trade Show, Poster Presentation – 4-5pm

Cost includes:  workshops and all meals (breakfast, lunch, reception and coffee breaks)

Location – Alberta Innovates/InnoTech Alberta, 250 Karl Clark Road, Edmonton, AB

Register https://am-alberta.eventbrite.ca

Innotech Alberta  

InnoTech Alberta, in conjunction with the University of Alberta and Canada Makes, is hosting a two-day workshop addressing Additive Manufacturing in Alberta.

  • How do we work together to become more innovative and competitive?
  • What tools do we need to adopt?
  • What changes do we need to make?

The first day is a training course presented by Addworks™ at GE Additive. The full day course will discuss the concepts and tools necessary to adopt additive manufacturing.

The second day highlights a number of invited speakers and panelists to showcase their best practices in adoption of additive manufacturing.

This event is targeted towards designers, engineers, fabricators, innovators, and company owners.

*Earlybird discounts are in effect until Sept. 15th.

*Ticket price includes continental breakfast and hot lunch (please contact the organizer if you have special dietary requirements)

Day 1: Learning Seminar – Wednesday, October 10 (9:00AM-4:00PM)

Breakfast and Registration start at 8:00am

Presented by: Valeria Proano Cadena, Lead Engineer, Addworks™ at GE Additive and Joe Hampshire, Product Strategy Leader, Addworks™ at GE Additive

Title

Best practices for your Additive Journey – Design, Process Selection, and Materials

Abstract

As organizations begin to adopt additive technology, they quickly realize that it takes different thinking, tools and processes to be successful in using additive in production-level manufacturing. In this workshop, Addworks™ at GE Additive will cover key concepts and best practices they use on a daily basis for its production of additive parts.

AddWorks is GE Additive’s engineering consulting team that helps companies with additive part development and production in the automotive, aviation and energy/power industries. Regardless of how simple or complex, AddWorks can help you navigate your additive journey and find a path most beneficial to your goals. GE Additive started their own additive journey over 4 years ago and is now the #1 additive user in the world.

The following outlines learning objectives for this workshop:

  1. Real-life use case examples of additive manufacturing
  2. Design best practices including requirements, conceptual design, process selection, producibility and FastWorks
  3. An overview of the material development process where machine parameters in combination with post processing drive the material properties and performance
  4. An overview of additive manufacturing processes and the various additive technologies
  5. An overview of the GE Additive innovation process used for the Additive Manufacturing
  6. Cost modeling considerations and methods for additive components.

Day 2: Workshop – Thursday, October 11, 2018 (8:45AM – 4:00PM)

Breakfast and Registration start at 8:00am

Join us after the Workshop for a reception, tradeshow, and poster presentations (starts at 4:00pm).

Keynote Speaker:

Disrupting the Disruption: How GE Additive is Pushing the Boundaries of AM, Joe Hampshire, Addworks™ at GE Additive

Invited Speakers:

  • Mark Ramsden, Director, Business Performance and Innovation, Worley Parsons
  • Ian Klassen, Director, Aerospace Sales and Business Development, Precision ADM
  • Dr. Dan Thoma, Director of Additive Network, University of Wisconsin
  • Dr. Mohsen Mohammadi, Director, Marine Additive Manufacturing Centre of Excellence, University of New Brunswick
  • Tharwat Fouad, President, Anubis 3D

Panel Discussions

Opportunities of Additive Manufacturing for the Energy Industry

Chair: Dr. Ehsan Toyserkani, University of Waterloo

  • Stefano Chiovelli, Syncrude Canada
  • Carl Weatherell, Canadian Mining Innovation Council
  • Philip Leung, Halliburton
  • Tyler Romanyk, Halliburton

Challenging the Status Quo in Alberta Manufacturing – a Small Business Perspective

Chair: Frank Delfaco, Canada Makes

  • Billy Rideout, Exergy
  • Darryl Short, Karma Machine
  • James Janeteas, Cimetrix
  • Kyle Hermenean, Machina Corp

Student Poster Presentation – Thursday, October 11

Students are invited to present their research using poster format. The best poster will be selected by an industry-academia-government committee and awarded a prize of $250.

Maximum size is 36” Tall x 48” wide.

Please contact Dr. Bogno (bogno@ualberta.ca) to submit your name, group, poster title/abstract, or for any poster related inquiries.

Students are required to submit a title and an abstract (max 200 words) of their poster. Deadline for submission is September 24.

Students must register for the Thursday event to submit a poster, although students are also welcome to register for the Wednesday event.

Posters should be submitted by Tuesday, October 9 at noon to Dr. Bogno.

______________________________________

For addtional event details please contact:

Dr. Tonya Wolfe, InnoTech Alberta

tonya.wolfe@innotechalberta.ca

Additive Manufacturing 101: How to (re)design your parts for Additive Manufacturing

(Image: 3D Hubs)

Redesigned concept of a carburetor (Image: Cassidy Silbernagel)

  Mechanical Design Engineer and Additive Manufacturing Ph.D. student

This is the final article in a series of original articles that will help you understand the origins of the technology that is commonly called 3D printing. First an introduction, followed by the seven main technologies categories (binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, vat photopolymerization) and now a design philosophy for additive manufacturing.

Design for Additive Manufacturing

All of these following principles differ greatly for each technology category. Some are not a concern, others are a major concern. Before you design for AM, you need to know which process you are designing for, and if possible, what machine it will be built upon. Each machine and even different materials differ on some of these aspects.
https://www.linkedin.com/pulse/design-metal-am-beginners-guide-marc-saunders/

Supports / Overhangs

Each technology deals with this differently. Generally, there is a critical angle (typically 45 degrees) that allows no support to be needed such as in the letter Y. Some need supports for all bridges of a certain length such as the middle of a capital H. Others need supports for overhangs such as at the ends of a capital T. How supports are designed or generated and removed needs to be thought of in the design process. By changing or re-orientating the design, you can minimise the need for supports, and change how the supports are removed.

Orientation

Two factors come into play for orientation. First is material properties can differ depending on the direction they are built. This shows some test bars I printed to test how build orientation affects the electrical resistivity of a metal alloy. Strength can differ depending on build orientation so if you have a part that needs to have a certain strength in a certain direction, you will need to know how the orientation affects the strength of the part.


Images: Marc Saunders

The second is that printed features can come out looking differently depending on orientation. If you have a circle you want to print and have it come out circular, you will need to orient the part so that the circle is in the XY plane and not chopped up by the layers.

Minimum feature size / Resolution

This greatly depends on the process you use, and especially the machine you use. Just because two machines from different manufacturers use the same technology, they may not have the same feature specifications. There are also many factors that play into minimum features, and each is different. Here you can see some of the minimum sizes for a typical SLS process in Nylon. This is where you need to find out the machine and material specific specifications if you want to be designing features in the submillimeter range.

Post-Processing


There are many different ways post-processing can affect how you design. If the process relies on supports, they will need to be removed manually, or potentially semi-automatically. If attached to a build plate, the parts will need to be removed. If there is excess powder or liquid trapped, it will need to be removed. If you want uniform or enhanced material properties, a heat treatment or post infusing of a second material may be needed. If you have critical surfaces that assemble, post machining will be required including custom part holding jigs or fixtures. All of these need to be taken into consideration when designing in order to gain the greatest benefits from AM.

Four ways to (re)design parts

Method 1: Send directly for AM

Method 2: Modify for AM

Method 3: Combine and redesign for AM

Method 4: Rethink and redesign for AM

Method 1: Send directly for AM

The first and easiest is to simply take an existing design and without modification create it using AM technology. This is advantageous when the single part is excessively complex making it difficult to produce using traditional methods or made from materials that are expensive where minimal waste is desirable. This can also be desirable when the lead times for a part are excessively long or if the part is no longer manufactured.

Advantages

  • Easiest
  • Less material wastage
  • Direct single part replacement
  • Potential faster lead times
  • Allows easier manufacture of complex design

Disadvantages

  • Narrow scope of use
  • Limited potential gains

Method 2: Modify for AM

The second is to redesign the single part to either improve performance and/or to make the part better suited for AM.

Advantages

  • Improve performance
  • Decrease weight
  • Improve printability
  • Direct single part replacement
  • Less material wastage

Disadvantages

  • Requires same assembly methods and parts

Method 3: Combine and redesign for AM

The third is to combine multiple parts to aid in part reduction, reduce assembly costs, and enhance performance.

Before 3D printing, this fuel nozzle had 20 different pieces. Now, just one part, the nozzle is 25% lighter and five times more durable.

Advantages

  • Allows reduction of parts
  • Reduce assembly
  • Potentially less risk than a complete redesign of overall machine/assembly

Disadvantages

  • Requires more design time
  • Requires testing and validation

Method 4: Modify for AM

The fourth is to completely rethink the assembly and redesign according to basic first principles and design requirements. While this complete redesign can yield the greatest results, it takes the most time and effort to achieve.

 

Image: Optisys LLCThe test project involved a complete redesign of a high-bandwidth, directional tracking antenna array for aircraft (known as a Ka-band 4×4 monopulse array).

Reduce part count reduction from 100 discrete pieces to a one-piece device.

  • Cut weight by over 95%.
  • Reduce lead time 11 to two months. (eight months of development, three to six more of build time)
  • Reduce production costs by 20%.
  • Eliminate 75% of non-recurring costs.

Advantages

  • Allows greatest performance increases
  • Eliminate parts and assembly
  • Reduce weight, cost, lead time

Disadvantages

  • Most amount of design effort

Wohlers Associates deliver first ever DfAM session in Canada

Wohlers Associates, represented by Terry Wohlers and Olaf Diegel, delivered its first and successful session in Montreal, Quebec. The June 12-14 Design for Additive Manufacturing (DfAM) course, sponsored by Canada Makes Partner CRIQ, was attended by bright and relatively young people experienced with CAD.

Participants came from a variety of sectors, including aerospace, industrial equipment and machinery, CAD and AM product sales and services, academia, government, and research. All with a common goal of of taking the next step in designing for AM. 

Terry Wohlers offered this about the session, “some of the participants said that they especially appreciated the hands-on topology optimization and lattice structure exercises. One participant stated that he attends many technical AM events and this one was, by far, one of the most valuable. Another said he appreciated that lead instructor Olaf Diegel spoke French, although most of the course was conducted in English.”

“Learning how to Design for Additive Manufacturing (DfAM) is critical for maximizing the output from your Additive Equipment,” said participant Hargurdeep Singh Director of Additive Manufacturing CAD MicroSolutions Inc. “Terry Wohlers and Olaf Diegel presented an excellent demonstration of DfAM. I particularly enjoyed learning about the Generative Design and Part Consolidation exercises using hands-on learning techniques.”

The average score given by the participants was 4.9 on a scale of 1 to 5, with 5 being best, so we were quite pleased with it.

Wohlers Associates will be holding another special three-day course on design for additive manufacturing (DfAM) in Frisco, Colorado August 8 to 10, 2018wohlersassociates.com/DfAM.html