Home » Posts tagged 'Design for additive manufacturing'

Tag Archives: Design for additive manufacturing

Canada Makes’ Metal Additive Demonstration Program to successfully conclude

Canada Makes will soon successfully conclude the forth round of its Metal Additive Demonstration Program. The program is well on its way to completing 60 projects this year through the engagement of 100 companies all interested in metal additive manufacturing (AM). Proving once again how very popular this program is with large and small companies from across the country.

The Metal Additive Demonstration Program, delivered by Canada Makes with funding from NRC-IRAP, has a goal to help Canadian companies increase their awareness and assist in understanding the various advantages metal AM technologies offer.

“I am proud to say that we have done projects with companies from all provinces and even one territory,” said Frank Defalco, Manager Canada Makes. “Canada Makes has helped bring to life several AM applications in a variety of sectors and I know we will continue working with companies to deliver innovative ideas that will help shape the future of manufacturing.”

How the Metal Additive Demonstration Program works?
Canada Makes assists in assessing the needs of manufacturers and how best AM can fit into their business model. Some have needs like the fabrication of obsolete legacy parts no longer available, AM offers a relatively inexpensive solution. Others are tooling companies looking to improve productivity and gaining a competitive edge by adopting conformal cooling.

Canada Makes then introduces eligible companies projects to leading Canadian service providers of metal AM technologies who form the working group for delivery of parts. Hailing from different parts of the country, these experts provide participating companies advice and guidance on the design of a part as well as the opportunities in adopting AM to their process.

One of the primary goals of the program is for Canada’s industry to learn about the cost savings associated with AM, and how best they can take advantage of the main areas where AM excels at; light-weighting of parts, parts consolidation and complexity of design, the sweet-spots for metal AM.

“Certain parts do not make sense to use additive manufacturing for, not all problems can be solved through 3D printing but plenty can,” added Defalco. “It is knowing were to use this powerful new tool and that is what we are trying to do with this program.”

Be they SMEs or larger corporations, AM is changing how we build things and this program is there to help them learn about the disruptions coming to their sector but also de-risks their initial trials of this exciting technology. The results will create awareness and encourage the adoption of AM technology, thus improving Canada’s manufacturing and exporting sectors and our global competitiveness, resulting in new technology skills and increased employment opportunities in Canada.

Onstream-PIG

Onstream Pipeline Inspection Gauge (PIG)

Since the start of the program, late 2014, Canada Makes engaged with over 200 Canadian companies and over this time we reported on some of the successful projects. Here are some of the successful projects reported on over the past few years. Starting with the recent article The future of manufacturing for the energy sector is being redefined, Onstream’s Director of Technology Stephen Westwood said this about their experience with the program. “Whilst 3D printing is almost competitive on existing parts the benefits are truly reaped when designing new parts. The hard part becomes letting go of your prejudices regarding what can and can not be made based on years of experiences with machining.”

spinner/impeller

spinner/impeller

Metal Additive Manufacturing (AM) Demonstration program completes first project
Back in 2015, Burloak Technologies completed the first project of the program, a spinner/impeller to be used in a production-logging tool to measure flow. For optimum efficiency it is important the part is as light as possible allowing an quicker change of speed when a change of flow is detected. As well the part needs to be chemical resistant to improve corrosion resistance to the well fluid encountered in hostile environments.

Design improved “Venturi Cup” for Melet Plastics

Precision ADM, Melet Plastics & Canada Makes partner on conformal cooling project
Precision ADM recently completed a conformal cooling mold project that developed an improved “Venturi Cup” for Melet Plastics. One of the major factors contributing to the deformation of molded plastic parts is a lack of uniform heat distribution throughout molds. Various areas of the final part created by a mold cool at different rates creating internal stresses and deformations.

MDA spacecraft interface brackets for an antenna

Canada Makes, Fusia & MDA team up for space-bound part 
Various satellite manufacturers are using additive manufacturing to reduce the cost and time required to build spacecraft parts. 3D printing offers new possibilities for manufacturers of satellites. The building of parts with additive manufacturing allows new capabilities not available using conventional manufacturing, although it can be expensive and difficult so it is crucial to use the technology correctly where it offers true benefits. The parts are spacecraft interface brackets for an antenna and been optimised for a flight project.

Procter & Gamble Stainless Steel AM part

P&G and AMM partner with Canada Makes’ Metal Additive Demonstration Program
Procter & Gamble Belleville Plant partnered with Additive Metal Manufacturing Inc. (AMM) and Canada Makes to explore building new customized parts using additive manufacturing (AM). The example piece of work is printed to serve the combined purposes to deliver fluid to designated locations with the four extended legs while minimizing disturbance to the flow that it merges in. The vast metallurgy choices also provide a wide spectrum of chemical/environmental resistance. This illustrated part was printed in Stainless Steel taking advantage of its good anti-corrosion performance. 

Small to medium-sized enterprises (SMEs) form the majority of the businesses participating in the program. Under the current challenging economic conditions and with strong competition from low-cost countries, SMEs are interested in adapting advanced manufacturing technologies, such as additive manufacturing, to improve their competitiveness. NRC-IRAP’s financial support enables Canada Makes to work with these SMEs to organize projects and build momentum in Canada, allowing companies to see the advantages of AM technologies and improve the performance of our manufacturers to compete globally.

Canada Makes intends to continue offering this program if the powers that be agree. We hope to confirm this in the coming weeks, so be sure to keep returning to Canada Makes’ website or subscribe to our newsletter (see home page to subscribe) and stay informed about Canada’s AM sector.

Through the delivery of the program, it quickly became apparent that newcomers engaged to participate in this emerging technology shared many of the same questions and concerns. Therefore, Canada Makes developed, with its partners, two interactive guides the Metal Additive Process Guide & Metal Additive Design Guide designed to assist businesses new to metal AM who want to learn about process and designing for metal AM. The Guides are easy to use, interactive and offer useful information for the adoption of this technology.

Access is free although we request that you register. Thank you and enjoy!

Metal Additive Design GuideMetal Additive Process Guide

If you are interested in the program, please contact
Frank Defalco
frank.defalco@cme-mec.ca
(613) 875-1674

Workshop: Design for Additive Manufacturing Presented by Réseau Québec-3D, CME Canada Makes & McGill University

March 21, 2018 at McGill University Réseau Québec – 3D (RQ3D)

This half-day workshop will feature presentation from some of Canada’s leading experts in additive manufacturing (AM) and offer the chance to network with some of Canada’s AM professionals. The workshop’s goal is to help industry personnel  understand one of the most important components of AM, designing for additive manufacturing DfAM.

Additive Manufacturing is changing your sector whether you like it or not, be ready!

It is no secret that AM is disrupting key sectors of Canada’s economy and Réseau Québec-3D and Canada Makes are working together to bring you the expertise and knowledge needed to help understand how you can use this powerful new technology to your advantage and be ready to adapt.

As usual, networking will be a primary focus of this workshop so we plan on including breaks and a networking lunch so you can ask questions face-to-face. Experts from Altair, Renishaw, Expanse Microtechnologies and the CRIQ will offer insightful discussions in their area of expertise. We look forward to seeing you there!

Sign up now as seating is limited.

Click here to register

Date: March 21, 2018
Time: 8 a.m. – 1:30 p.m.
Location: McGill University
Macdonald Engineering Building, Room 267
817 Sherbrooke Street West McGill University,
Montreal, Quebec H3A 0C3
Cost: 
$25 Réseau Québec-3D & CME Canada Makes Members
$50 Non-Members

Agenda:

Time Topic Speaker
8:00 – 9:00 a.m. Registration and Networking coffee  
9:00 – 9:30 a.m. Welcome Remarks & DfAM Fiona Zhao, McGill University
9:30 – 10:00 a.m. Design for Additive Manufacturing Altair
10:00 – 10:30 a.m. Impact of new AM capability and adoption method/point Félix-Etienne Delorme – Renishaw
10:30 – 10:45 a.m. Networking Break
10:45 – 11:15 a.m. Designing for metal AM CRIQ
11:15 – 11:45 a.m. CT Scanning Expanse Microtechnologies
11:45 – 12:00 p.m. Special announcement – Finalists Canada Makes 3D Challenge Frank Defalco
12:00 – 1:30 p.m. Networking lunch
1:30 – 2:30 p.m. Canada Makes’ Additive Manufacturing Advisory Board (AMAB) AGM Note: Only AMAB members

Contact information:
Frank Defalco, Manager Canada Makes
Frank.defalco@cme-mec.ca

Design for additive manufacturing: Guidelines & case studies for metal AM

The Government of Canada recently commissioned the Fraunhofer Institute to deliver a report ‘Design for Additive Manufacturing (AM) – Guidelines and Case Studies for Metal AM’. The goal of the report is the help Canadian companies and researchers take advantage of existing knowledge in metal AM.

The report is based on seven components each tailored to the specific needs of the chosen AM technology. It identifies leading edge industrial applications and trends associated with the design for AM and limitations related to current AM technologies. The evaluation of the seven case studies highlights general design principles to take best advantage of the powder bed based additive manufacturing techniques Laser Beam Melting (LBM) and Electron Beam Melting (EBM).

1. Bionic Wheel Carrier of Electric Vehicle – Automotive / Motorsports

2. Main Gearbox Bracket – Aerospace

3. Calibration Tool for Extrusion Process –  Energy

4. Heat Exchanger – Energy

5. Miniature Heat Exchanger / Cooler – Not limited to specific industry

6. Functionally integrated Implant – Medical

7. Functionally integrated Tooling Segment – Tooling

Compared to conventional manufacturing methods additive manufacturing technologies provide unique opportunities and freedom in design, resulting in a high degree of product individualisation. Building parts layer by layer without using any tooling, moulds or dies enables the design and manufacturing of very complex component geometry, such as lattice structures or free formed surfaces and organic shapes.

Hinge assembly manufactured in one shot with LBM (Source: Fraunhofer IWU)

Design attributes like undercuts are no longer a limitation and with the aid of topology optimisation the component geometry can be tailored to the specific needs of application. In addition to it, features and functionalities can be incorporated into a part just during the manufacturing process in one shot and assemblies consisting of many components can be reduced to a single part. Even the assembling of different parts during primary shaping with AM technologies is possible, which has already been demonstrated for components like bearings, chains, hinges.

Moreover, the design optimisation and material characterisation are analysed. Finally, there are given overall conclusions with focus on AM-specific design optimisation, main flaws and weaknesses of the considered metal AM processes as well as aspects of AM commercialisation.

Example for topology optimisation – skateboard axle mounting, manufactured with LBM (Source: Fraunhofer IWU)

Skateboard Truck (Titanium) , LBM design demonstrator with topology optimisation and graded lattice structures (Source: Philipp Manger)

This is a small sample of what is available in this comprehensive report. We invite you to download this report and take full advantage of the know-how on offer.

Download the full report here.

Calgary’s Cassidy Silbernagel repeats as winner of Design for Additive Manufacturing Challenge 2017

Cassidy

Cassidy Silbernagel

Last month Canada Makes reported on the finalists for the Additive World Design for Additive Manufacturing Challenge 2017 and we are pleased to announce that Cassidy Silbernagel once again won in the students’ category.

“I’m honoured to be selected a second time as the winner in the student category,” said Silbernagel. “This  competition offered the opportunity to show that additive manufacturing (AM) can take old designs, such as a carburetor, and make them new again with added benefit and features like part reduction, decreased size and weight, and improved performance.”

On Wednesday March 15, the Jury announced the two winners of the Additive World Design for Additive Manufacturing Challenge 2017. From a group of 76 contestants, both professionals and students, 3 finalists were selected per category. The two winners selected best achieved the goal of making a new design or redesign an existing product for additive manufacturing.

Sealer Arm

Lareka Confectionery Equipment’s Sealer Arm

The ‘Chocolate Shock Prevention Team’ of Lareka Confectionery Equipment from The Netherlands won in the professionals’ category with their redesigned ‘Sealer Arm’ for a chocolate bar packaging line. The redesigned and 3D printed sealer arm successfully combined a substantial increase in the quality of chocolate packaging because of better temperature regulation with a reduction of 50 parts.

Cassidy Silbernagel, representing the University of Nottingham, won with redesigned carburetor including integrated moving parts, floats, lightweight internal lattice structures and optimized design to reduce the number of support structures.

Cassidy said, “software like the University’s FLatt Pack for lattice generation is speeding up the workflow from idea to creation is becoming easier and quicker and greatly decreases development time for new products. The use of these new software options is crucial to new AM design creation.”

Cassidy Silbernagel's redesigned carburetor

Cassidy Silbernagel’s redesigned carburetor

“Although AM is an amazing technology,” stated Cassidy. “It isn’t a magic hammer that solves all manufacturing needs. It is just one of many tools in a designer’s tool chest that can be utilized, but first designers need to know that they have this tool, and they need to know how to use it. I’m happy to see that this competition along with organizations like Canada Makes and Additive Industries are helping teach designers this fact, and I’m proud to also aid in this educational goal.”

Canada Makes salutes the winners and all contestants. Challenges like Design for Additive Manufacturing Challenge helps showcase the vast potential of Additive Manufacturing for industry.

A graduate of Mechanical Engineering at the University of Calgary, Cassidy is in the UK currently pursuing a PhD at the University of Nottingham. He is researching the possibility of using AM in electric motors, specifically using AM to create coils/windings using a conductive metal like copper or aluminum and an insulating material like ceramic.

Last years’ winning design was an innovative electric motor casing to fit into an existing crankshaft case of a regular motorcycle enabling electrification. Silbernagel’s design reduced eight parts to one lightweight component and integrated room for heat transfer and well-rounded wiring tunnels.

Motor casing

Cassidy’s 2016 winning design Electric motor casing

For this years’ contest designers were asked to tailor their designs, to eliminate manufacturing difficulties, reduce the number of parts, minimize assembly or lower logistics costs, often combined. Designs were submitted from all over the world including the US, the Netherlands, Germany, UK, Spain, India, Russia and Italy representing different sectors, advanced food processing, the aeronautics industry, automotive as well as high-tech.

About Design for Additive Manufacturing Challenge
In order to grow the number of examples and inspire many other industries to develop dedicated applications for industrial 3D printing, Additive Industries has launched the Additive World Design for Additive Manufacturing Challenge. Competing in two categories, both professionals and students were encouraged to redesign an existing conventional part of a machine or product for 3D printing.

Partners in the Design for Additive Manufacturing Challenge are leading CAE technology provider (e.g. Topology Optimization) – Altair Engineering and consumer 3D printer manufacturer Ultimaker. Contestants are to be supported by Additive Industries’ AddLab team in topology optimisation during the design process. Winners in both categories take home the latest Ultimaker 2+ 3D printer and Autodesk’s NetFabb software. All finalists receive a licence of Altair’s Inspire software and Autodesk Fusion 360 and award winning designs will be printed in metal by AddLab.

About Canada Makes

Canada Makes is a network of private, public, academic, and non-profit entities dedicated to promoting the adoption and development of additive manufacturing in Canada. For more information on Canada Makes, please visit www.canadamakes.ca or contact Frank Defalco at frank.defalco@cme-mec.ca

 

-30-