Material Extrusion
ISO/ASTM definition: “material extrusion, —an additive manufacturing process in which material is selectively dispensed through a nozzle or orifice.”[1]
Material Extrusion can also be known as (in alphabetical order):
➢ Direct Ink Writing or DIW[2]
➢ Extrusion Freeform Fabrication or EFF[3]
➢ Fused Deposition Modeling or FDM® (Stratasys Inc.)[4]
➢ Fused Filament Fabrication or FFF[5]
➢ Glass 3D Printing or G3DP[6]
➢ Liquid Deposition Modeling or LDM[7]
➢ Micropen Writing[8]
➢ Plastic Jet Printing or PJP (3D Systems Corporation)
➢ Robocasting or Robotic Deposition[9], [10]
In 1988, Scott Crump invented a new AM process based on candle wax and a hot glue gun while making a toy for his daughter in the kitchen. The next year he started the company Stratasys, which became one of the largest AM companies in the world. In 2005, in the United Kingdom, Adrian Bowyer at the University of Bath started the RepRap project[5] based on the technology that made Stratasys so successful. His goal was to be able to make use of expiring patents[4] that would make FFF available to everyone, and create an open source 3D printer that was capable of replicating rapidly (RepRap) itself, or at least make as many parts for itself as it could. This first open source printer was released in 2008 and inspired many companies to make their own versions based on the RepRap platform. One company, MakerBot, was founded in 2009 and later acquired by Stratasys in 2013. This open-source design along with the expired patents allowed hundreds of different printer designs and companies to emerge since then. This recent development has contributed to the public’s general awareness of AM technology, even though the core technology started over 30 years ago. Most desktop 3D printers in the world are of this type and are what most people think of when they think 3D printer.

Figure 1: Example of a material Extrusion system’s basic components[11]
References
[1] “ISO/ASTM 52900:2015(en), Additive manufacturing — General principles — Terminology,” International Organization for Standardization (ISO), Geneva, Switzerland, 2015.
[2] Lewis J. A. and Gratson G. M., “Direct writing in three dimensions,” Materials Today, vol. 7, no. 7–8, pp. 32–39, Jul. 2004.
[3] Calvert P. D., Frechette J., and Souvignier C., “Gel mineralization as a Model for Bone Formation,” in MRS Proceedings, San Francisco, California, USA, 1998, vol. 520, pp. 305–401.
[4] Crump S. S., “Apparatus and method for creating three-dimensional objects,” U.S. Patent 5,121,329, 09-Jun-1992.
[5] Jones R., Haufe P., Sells E., Iravani P., Olliver V., Palmer C., and Bowyer A., “RepRap – the replicating rapid prototyper,” Robotica, vol. 29, no. 1, pp. 177–191, Jan. 2011.
[6] Klein J., Stern M., Franchin G., Kayser M., Inamura C., Dave S., Weaver J. C., Houk P., Colombo P., Yang M., and Oxman N., “Additive Manufacturing of Optically Transparent Glass,” 3D Printing and Additive Manufacturing, vol. 2, no. 3, pp. 92–105, Sep. 2015.
[7] Postiglione G., Natale G., Griffini G., Levi M., and Turri S., “Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling,” Composites Part A: Applied Science and Manufacturing, vol. 76, pp. 110–114, Sep. 2015.
[8] Morissette S. L., Lewis J. A., Clem P. G., Cesarano III J., and Dimos D. B., “Direct-Write Fabrication of Pb(Nb,Zr,Ti)O 3 Devices: Influence of Paste Rheology on Print Morphology and Component Properties,” Journal of the American Ceramic Society, vol. 84, no. 11, pp. 2462–2468, Nov. 2001.
[9] Cesarano III J., Segalman R., and Calvert P. D., “Robocasting provides moldless fabrication from slurry deposition,” Ceramic Industry, vol. 148, no. 4, Business News Publishing, Troy, Michigan, USA, pp. 94–100, 1998.
[10] Cesarano III J. and Calvert P. D., “Freeforming objects with low-binder slurry,” U.S. Patent 6,027,326, 22-Feb-2000.
[11] Gibson I., Rosen D. W., and Stucker B., Additive Manufacturing Technologies. Boston, MA: Springer US, 2010.
[12] Khoshnevis B., “Automated construction by contour crafting—related robotics and information technologies,” Automation in Construction, vol. 13, no. 1, pp. 5–19, Jan. 2004.
[13] Li P., Mellor S., Griffin J., Waelde C., Hao L., and Everson R., “Intellectual property and 3D printing: a case study on 3D chocolate printing,” Journal of Intellectual Property Law & Practice, vol. 9, no. 4, pp. 322–332, Apr. 2014.
[14] Nickels L., “Crowdfunding metallurgy,” Metal Powder Report, Nov. 2015.
[15] Periard D., Schaal N., Schaal M., Malone E., and Lipson H., “Printing Food,” in Proceedings of the 18th Solid Freeform Fabrication Symposium (SFF), Austin, Texas, USA, 2007, pp. 564–574.
[16] Mironov V., Boland T., Trusk T., Forgacs G., and Markwald R. R., “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends in Biotechnology, vol. 21, no. 4, pp. 157–161, Apr. 2003.
[17] Song X., Pan Y., and Chen Y., “Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing,” Journal of Manufacturing Science and Engineering, vol. 137, no. 2, p. 21005, Apr. 2015.
[18] Khoshnevis B., Bodiford M., Burks K., Ethridge E., Tucker D., Kim W., Toutanji H., and Fiske M., “Lunar Contour Crafting – A Novel Technique for ISRU-Based Habitat Development,” in 43rd American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 2005, vol. 13(1), no. January, pp. 5–19.
[19] Bagsik A. and Schöoppner V., “Mechanical Properties of Fused Deposition Modeling Parts Manufactured with ULTEM 9085,” in Proceedings of the 69th Annual Technical Conference of the Society of Plastics Engineers 2011 (ANTEC 2011), Boston, Massachusetts, USA, 2011, pp. 1294–1298.